Skip to main content
Log in

High-Intensity Focused Ultrasound: Heating and Destruction of Biological Tissue

  • TECHNIQUE OF MEDICAL MONITORING AND VISUALIZATION
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of a numerical study of heating and destruction of a biological tissue under the action of a series of focused ultrasound pulses generated by a multielement array (tumor treatment programs) are presented. Irradiation programs are considered that differ in the locations of focal points within a tissue (the Archimedean and “square” spirals), the number of pulses in the series, and the time delay between pulses. A significant influence of the parameters of the pulse series and perfusion process on the size of the thermal lesion area in a tissue was established in a considered range of moderate intensities of radiation. It was shown that the heat propagation process in the tissue turns with time to a quasi-spherical pattern and is weakly dependent on the irradiation program type. This characteristic of the process is discussed in terms of its possible use to optimize protocols of medical procedures utilizing focused ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Z. Izadifar, P. Babyn, and D. Chapman, Ultrasound Med. Biol. 43 (6), 1085 (2017). https://doi.org/10.1016/j.ultrasmedbio.2017.01.023

    Article  Google Scholar 

  2. C. R. Hill and J. C. Bamber, Physical Principles of Medical Ultrasonics, Ed. by G. R. TerHaar (Wiley, New York, 2004).

    Book  Google Scholar 

  3. L. R. Gavrilov, Izv. Yuzhn. Fed. Univ., Tekh. Nauki, No. 11, 208 (2013).

    Google Scholar 

  4. L. R. Gavrilov, Focused High-Intensity Ultrasound in Medicine (Fazis, Moscow, 2013) [in Russian].

    Google Scholar 

  5. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, Acoust. Phys. 49 (4), 369 (2003).

    Article  ADS  Google Scholar 

  6. Yu. S. Andriyakhina, M. M. Karzova, P. V. Yuldashev, and V. A. Khokhlova, Acoust. Phys. 65 (2), 141 (2019). https://doi.org/10.1134/S1063771019020015

    Article  ADS  Google Scholar 

  7. M. Wang and Y. Zhou, Int. J. Hyperthermia 32 (5), 569 (2016). https://doi.org/10.3109/02656736.2016.1160154

    Article  Google Scholar 

  8. C. Mougenot, M. O. Kohler, J. Enholm, B. Quesson, and C. Moonen, Med. Phys. 38, 272 (2011).

    Article  Google Scholar 

  9. X. Fan and K. Hynynen, Ultrasound Med. Biol. 22 (4), 471 (1996). https://doi.org/10.1016/0301-5629(96)00026-9

    Article  Google Scholar 

  10. C. Damianou and K. Hynynen, J. Acoust. Soc. Am. 95 (3), 1641 (1994).

    Article  ADS  Google Scholar 

  11. A. K. W. Wood and C. M. Sehgal, Ultrasound Med. Biol. 41 (4), 905 (2015). https://doi.org/10.1016/j.ultrasmedbio.2014.11.019

    Article  Google Scholar 

  12. E. A. Filonenko and V. A. Khokhlova, Acoust. Phys. 47 (4), 468 (2001).

    Article  ADS  Google Scholar 

  13. P. B. Rosnitskiy, P. V. Yuldashev, O. A. Sapozhnikov, A. D. Maxwell, W. Kreider, M. R. Bailey, and V. A. Khokhlova, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64, 374 (2017).

    Article  Google Scholar 

  14. Kohei Okita, Kenji Ono, Shu Takagi, and Yoichiro Matsumoto, Int. J. Numer. Methods Fluids 64, 1395 (2010).

    Article  ADS  Google Scholar 

  15. A. A. Samarskii and P. N. Vabishchevich, Computational Heat Transfer (Editorial URSS, Moscow, 2003) [in Russian].

    Google Scholar 

  16. P. M. Meaney, R. L. Clarke, G. R. Ter Haar, and I. H. Rivens, Ultrasound Med. Biol. 24 (9), 1489 (1998). https://doi.org/10.1016/S0301-5629(98)00102-1

    Article  Google Scholar 

  17. E. A. Filonenko, L. R. Gavrilov, V. A. Khokhlova, and J. W. Hand, Acoust. Phys. 50 (2), 222 (2019). https://doi.org/10.1134/1.1675879

    Article  ADS  Google Scholar 

  18. T. A. Andreeva, A. E. Berkovich, N. Y. Bykov, S. V. Kozyrev, and A. Ya. Lukin, Mater. Phys. Mech. 42, 625 (2019). https://doi.org/10.18720/MPM.4252019_16

    Article  Google Scholar 

  19. K. P. Morrison, G. W. Keilman, and P. J. Kaczkowski, Proc. Int. Ultrasonics Symp. (2014), pp. 400–404.

  20. H. H. Pennes, J. Appl. Phys. 1 (2), 93 (1948).

    Google Scholar 

  21. M. Stanczyk and J. J. Telega, Acta Bioeng. Biomech. 4 (1), 31 (2002).

    Google Scholar 

  22. Physics of Thermal Therapy. Fundamentals and Clinical Applications, Ed. by E. G. Moros (CRC Press, Boca Raton, 2012).

    Google Scholar 

  23. H. T. O’Neil, J. Acoust. Soc. Am. 21 (5), 516 (1949).

    Article  ADS  Google Scholar 

  24. P. A. Hasgall, F. Di Gennaro, C. Baumgartner, E. Neufeld, B. Lloyd, M. C. Gosselin, D. Payne, A. Klingenböck, and N. Kuster, ITIS Database for Thermal and Electromagnetic Parameters of Biological Tissues, Version 4.0 (May 15, 2018). https://doi.org/10.13099/VIP21000_04_0.itis.swiss/database

  25. V. B. Akopyan and Yu. A. Ershov, Basics of Interaction between Ultrasound and Biological Objects (Bauman Mosk. Gos. Tekh. Univ., Moscow, 2005) [in Russian].

  26. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Problems of Gas Dynamics (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  27. Numerical Solution of Multidimensional Problems in Gas Dynamics, Ed. by S. K. Godunov (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  28. S. A. Sapareto and W. C. Dewey, Int. J. Radiat. Oncol., Biol., Phys. 10, 787 (1984).

    Article  Google Scholar 

  29. R. Yuldashev, S. Shmeleva, S. Ilyin, O. Sapozhnikov, L. Gavrilov, and V. Khokhlova, Phys. Med. Biol. 58 (8), 2537 (2013). https://doi.org/10.1088/0031-9155/58/8/2537

    Article  Google Scholar 

  30. K. J. Parker, J. Acoust. Soc. Am. 77 (2), 719 (1985).

    Article  ADS  Google Scholar 

  31. V. A. Berezovskii and N. N. Kolotilov, Biophysical Characteristics of Human Tissues: A Handbook (Naukova Dumka, Kiev, 1990) [in Russian].

    Google Scholar 

  32. A. E. Berkovich, E. M. Smirnov, A. D. Yukhnev, Ya. A. Gataulin, D. E. Sinitsyna, and D. A. Tarkhov, J. Phys.: Conf. Ser. 1044, 012023 (2018).

    Google Scholar 

  33. Y. Zhou, Ultrasound Q. 33 (4), 253 (2017). https://doi.org/10.1097/ruq.0000000000000300

    Article  Google Scholar 

Download references

Funding

Calculations were performed using assets of the Polytechnic Supercomputer Center. This work was supported by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Y. Bykov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, T.A., Berkovich, A.E., Bykov, N.Y. et al. High-Intensity Focused Ultrasound: Heating and Destruction of Biological Tissue. Tech. Phys. 65, 1455–1466 (2020). https://doi.org/10.1134/S1063784220090030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220090030

Navigation