Skip to main content
Log in

Phase Transformations in Iron Oxide under the Action of Microwave Radiation

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It has been shown that microwave radiation induces structural and, as a consequence, magnetic phase transformations in iron oxide α-Fe2O3 (hematite). After microwave irradiation of fine-dispersed partially amorphized Fe2O3 particles for 10 min in wet air, the percentage of crystalline hematite drops by 40% but the total amount of crystalline components increases owing to the formation of a new ferromagnetic modification, α-Fe2O3 maghemite. The initial antiferromagnetic and final ferromagnetic Fe2O3 samples are powders consisting of spherical particles with nearly equisized (40–60 nm) domains of X-ray coherent scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. A. Zhenzhurist, Glass Ceram. 73 (11–12), 423 (2017).

    Google Scholar 

  2. Y. V. Bykov, S. V. Egorov, A. G. Eremeev, V. V. Kholoptsev, I. V. Plotnikov, K. I. Rybakov, and A. A. Sorokin, Materials 9 (8), 684 (2016). https://doi.org/10.3390/ma9080684

    Article  ADS  Google Scholar 

  3. R. R. Menezes, P. M. Souto, and R. H. G. A. Kiminami, Sintering Ceram.: New Emerging Tech., p. 3 (2012).

    Google Scholar 

  4. O. N. Kanygina, M. M. Filyak, and A. G. Chetverikova, Inorg. Mater. 54 (9), 904 (2018). https://doi.org/10.1134/S0020168518090042

    Article  Google Scholar 

  5. H. Shokrollahi, J. Magn. Magn. Mater. 426, 74 (2017). https://doi.org/10.1016/j.jmmm.2016.11.033

    Article  ADS  Google Scholar 

  6. S. V. Salikhov, A. G. Savchenko, I. S. Grebennikov, and E. V. Yurtov, Bull. Russ. Acad. Sci.: Phys. 79 (9), 1106 (2015).

    Article  Google Scholar 

  7. V. N. Nikiforov, A. E. Goldt, E. A. Gudilin, V. G. Sredin, and V. Yu. Irhin, Bull. Russ. Acad. Sci.: Phys. 78 (10), 1075 (2014).

    Article  Google Scholar 

  8. E. Morán, M. C. Blesa, M.-E. Medina, J. D. Tornero, N. Menéndez, and U. Amador, Inorg. Chem. 41 (23), 5961 (2002).

    Article  Google Scholar 

  9. W. Wu, X. H. Xiao, S. F. Zhang, T. C. Peng, J. Zhou, F. Ren, and C. Z. Jiang, Nanoscale Res. Lett. 5, 1474 (2010). https://doi.org/10.1007/s11671-010-9664-4

    Article  ADS  Google Scholar 

  10. A. G. Chetverikova and O. N. Kanygina, Meas. Tech. 59, 618 (2016). https://doi.org/10.1007/s11018-016-1019-9

    Article  Google Scholar 

  11. A. G. Chetverikova, O. N. Kanygina, M. M. Filyak, and E. S. Savinkova, Meas. Tech. 60 (11), 1109 (2018). https://doi.org/10.1007/s11018-018-1326-4

    Article  Google Scholar 

  12. A. G. Kolmakov, K. A. Solntsev, P. A. Vityaz’, A. F. Il’yushchenko, M. L. Kheifets, and S. M. Barinov, Inorg. Mater.: Appl. Res. 4 (4), 322 (2013). https://doi.org/10.1134/S2075113313040059

    Article  Google Scholar 

  13. O. N. Kanygina, A. G. Chetverikova, M. M. Filyak, and A. A. Ogerchuk, Glass Ceram. 72 (11), 444 (2016). https://doi.org/10.1007/s10717-016-9807-x

    Article  Google Scholar 

  14. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  15. V. N. Krasil’nikov, O. I. Gyrdasova, A. P. Tyutyunnik, T. V. Diachkova, I. V. Baklanova, V. G. Bamburov, V.  V.  Marchenkov, and A. N. Domozhirova, Dokl. Chem. 481 (2), 161 (2018).

    Article  Google Scholar 

  16. N. M. Astaf’eva, Phys.-Usp. 39 (11), 1085 (1996). https://doi.org/10.1070/PU1996v039n11ABEH000177

    Article  Google Scholar 

  17. O. V. Lazorenko, S. V. Lazorenko, and L. F. Chernogo, Radio Phys. Radio Astron. 12 (2), 182 (2007).

    ADS  Google Scholar 

  18. J. M. Gregoire, D. Dale, and R. B. van Dover, Rev. Sci. Instrum, 82, 015105 (2011). https://doi.org/10.1063/1.3505103

    Article  ADS  Google Scholar 

  19. A. I. Gusev and A. S. Kurlov, Metallofiz. Nov. Tekhnol. 30 (5), 679 (2008).

    Google Scholar 

  20. A. Yu. Buzimov, S. N. Kulkov, L. A. Gömze, R. Géber, and I. Kocserha, Inorg. Mater.: Appl. Res. 9 (5), 910 (2018). https://doi.org/10.30791/1028-978X-2018-4-31-39

    Article  Google Scholar 

  21. J. E. Huheey, Inorganic Chemistry. Principles of Structure and Reactivity, 3rd ed. (Harper and Row, New York, 1983).

    Google Scholar 

  22. W. A. Harrison, Phys. Rev. B 73 (21), 212103 (2006).

    Article  ADS  Google Scholar 

  23. A. U. Gehring, H. Fischer, M. Louvel, K. Kunze, and P. G. Weidler, Geophys. J. Int. 179 (3), 1361 (2009).

    Article  ADS  Google Scholar 

  24. D. E. Cox, W. J. Takei, R. C. Miller, and G. Shiraneet, J. Phys. Chem. Solids 23 (7), 863 (1962).

    Article  ADS  Google Scholar 

  25. V. P. Alekseev, E. V. Rybnikova, and M. A. Shipilin, Vestn. Yaroslavl Gos. Univ. Ser. Estestv. Tekh. Nauki, No. 4, 10 (2012).

    Google Scholar 

  26. J. W. Stucki, B. A. Goodman, and U. Schwertmann, Iron in Soils and Clay Minerals. Cityplace (Reidel, Dordrecht, 1988).

    Google Scholar 

  27. J.-E. Jørgensen, L. Mosegaard, L. E. Thomsen, T. R. Jensen, and J. C. Hanson, J. Solid State Chem. 180 (1), 180 (2007).

    Article  ADS  Google Scholar 

  28. L. Mu, C. Feng, and H. He, MATCH Commun. Math. Comput. Chem. 56 (1), 97 (2006).

    Google Scholar 

  29. C. Pecharromán, T. González-Carreño, and J. E. Iglesias, Phys. Chem. Minerals 22 (1), 21 (1995).

    Article  ADS  Google Scholar 

  30. L. Glasser, Inorg. Chem. 34 (20), 4935 (1995).

    Article  Google Scholar 

  31. Musa Mutlu Can, M. Coskun, and Tezer Fırat, J. Alloys Compd. 542, 241 (2012). https://doi.org/10.1016/j.jallcom.2012.07.09131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Chetverikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanygina, O.N., Berdinskii, V.L., Filyak, M.M. et al. Phase Transformations in Iron Oxide under the Action of Microwave Radiation. Tech. Phys. 65, 1261–1266 (2020). https://doi.org/10.1134/S1063784220080095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220080095

Navigation