Skip to main content
Log in

The Effect of Texturing of Silicon Wafer Surfaces for Solar Photoelectric Transducers on Their Strength Properties

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An important technological operation for increasing the efficiency of silicon-based solar transducers is the formation of textures on the silicon surface with roughness sizes close to the wavelength of visible light. We consider the influence of various versions of structuring of silicon wafer surfaces on their strength properties. We analyze four types of silicon surface textures: (i) surfaces obtained after selective etching in an alkali solution, (ii) pyramidal textured surfaces, (iii) surfaces textured by oxidation under a thin V2O5 layer, and (iv) surfaces after high-temperature annealing and processing in HF. We have obtained electron-microscopic images of all four textures and have measured their strength of differently textured silicon wafers using the “ring-on-ring” test. The dependences of maximum stresses and deflection under the smaller ring due to loading are calculated using the finite element method. The coincidence of the latter dependence with the experimental results serves as a criterion of the correctness of determining the wafer strength. The mean values and standard deviations of the strength have been calculated for each of the four groups of silicon wafers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovolt., No. 4, 96 (2014).

  2. J. Kegel, H. Angermann, U. Stürzebecher, E. Conrad, M. Mews, L. Korte, and B. Stegemann, Appl. Surf. Sci. 301, 56 (2014).

    Article  ADS  Google Scholar 

  3. Springer Handbook of Electronic and Photonic Materials, Ed. by S. Kasap and P. Capper (Springer, 2017).

    Google Scholar 

  4. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, Prog. Photovolt. Res. Appl. 25, 668 (2017).

    Article  Google Scholar 

  5. ITRPV, 8th ed. (September 2017). http://www.semi.org/sites/semi.org/files/docs/ITRPV_2014_Roadmap_Revision1_140324.pdf

  6. M. Köntges, S. Kurtz, U. Jahn, K. A. Berger, K. Kato, H. Liu, T. Friesen, and M. Van Iseghem, IEA-PVPS T13-01 2014 Review of Failures of Photovoltaic Modules (IEA, 2014).

    Google Scholar 

  7. L. Forbes, Sol. Energy 86, 319 (2012).

    Article  ADS  Google Scholar 

  8. M. Edwards, S. Bowden, U. Das, and M. Burrows, Sol. Energy Mater. Sol. Cells 92, 1373 (2008).

  9. M. Moreno, D. Murias, J. Martinez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P. Rosales, P. Roca i Cabarrocas, and M. Escobar, Sol. Energy 101, 182 (2014).

    Article  ADS  Google Scholar 

  10. A. Buchler, A. Beinert, S. Kluska, V. Haueisen, P. Romer, F. D. Heinz, M. Glatthaar, and M. Schubert, Energy Procedia 124, 18 (2017).

    Article  Google Scholar 

  11. J. Rion, Y. Leterrier, J.-A. E. Menson, and J.-M. Blairon, Composites, Part A 40, 1167 (2009).

    Article  Google Scholar 

  12. S. E. Nikitin, E. E. Terukova, A. V. Nashchekin, and A. V. Bobyl’, RF Patent No. 2 600 076 (October 20, 2016).

  13. S. E. Nikitin, A. V. Nashchekin, E. E. Terukova, I. N. Trapeznikova, A. V. Bobyl’, and V. N. Verbitskii, Semiconductors 51 (1), 104 (2017).

    Article  ADS  Google Scholar 

  14. J. Frühauf, Shape and Functional Elements of the Bulk Silicon Microtechnique. A Manual of Wet-Etched Silicon Structures (Springer, Berlin, 2005). https://link.springer.com/content/pdf/10.1007%2Fb138230.pdf

    Google Scholar 

  15. H. Angermann, A. Laades, U. Stürzebecher, E. Conrad, C. Klimm, T. F. Schulze, K. Jacob, A. Lawerenz, and L. Korte, Solid State Phenom. 187 (349), 52 (2012).

    Article  Google Scholar 

  16. Practical Scanning Electron Microscopy. Electron and Ion Microprobe Analysis, Ed. by J. I. Goldstein and H. Yakowitz (Springer, Boston, 1975).

    Google Scholar 

  17. A. Borghesi, B. Pivac, A. Sassella, and A. Stella, J. Appl. Phys. 77, 4169 (1995).

    Article  ADS  Google Scholar 

  18. J. R. Wilson and M. E. Levis, Nature 206, 1350 (1965).

    Article  ADS  Google Scholar 

  19. V. V. Shpeizman, V. I. Nikolaev, A. O. Pozdnyakov, A. V. Bobyl’, R. B. Timashov, and A. I. Averkin, Tech. Phys. 65 (1), 73 (2020).

    Article  Google Scholar 

  20. S. Gouttebroze, H. I. Lange, X. Ma, R. Glockner, B. Emamifard, M. Syvertsen, M. Vardavoulias, and A. Ulyashin, Phys. Status Solidi A 210 (4), 777 (2013). https://doi.org/10.1002/pssa.201300003

    Article  ADS  Google Scholar 

  21. A. M. Gabor, R. Janoch, A. Anselmo, J. L. Lincoln, H. Seigneur, and Ch. Honeker, IEEE J. Photovolt. 6 (1), 3575 (2016).

    Google Scholar 

  22. G. Rozgonyi, K. Youssef, P. Kulshreshtha, M. Shi, and E. Good, Solid State Phenom. 178179, 79 (2011). https://doi.org/10.4028/www.scientific.net/SSP.178-179.79

  23. G. Coletti, N. van der Borg, S. De Iuliis, C. J. Tool, and L. J. Geerligs, Proc. 21st Eur. Photovoltaic Solar Energy Conf. and Exhibition, September 4–8, 2006, Dresden, Germany, rx06032.

  24. P. Rupnowski and B. Sopori, Int. J. Fract. 155, 67 (2009).

    Article  Google Scholar 

  25. V. A. Popovich, W. Geerstma, M. Janssen, I. J. Bennett, and I. M. Richardson, EPD Congress, The Minerals, Metals & Materials Series,2015, Ed. by J. Yurko, A. Allanore, L. Bartlett, J. Lee, L. Zhang, G. Tranell, Y. Meteleva-Fischer, S. Ikhmayies, A. S. Budiman, P. Tripathy, and G. Fredrickson (Springer, 2015), p. 242.

  26. F. F. Vitman, Ya. S. Uflyand, and B. S. Ioffe, Prikl. Mekh. 6 (5), 122 (1970).

    Google Scholar 

  27. V. A. Stepanov, N. N. Peschanskaya, and V. V. Shpeizman, Strength and Relaxation Phenomena in Solids (Nauka, Leningrad, 1984) [in Russian].

    Google Scholar 

  28. L. V. Zhoga, V. A. Stepanov, and V. V. Shpeizman, Fiz. Tverd. Tela 19 (8), 1521 (1977).

    Google Scholar 

  29. R. Gallagher, Finite Element Analysis: Fundamentals (Prentice Hall, New Jersey, 1975).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Electron-microscopic measurements were performed using the equipment of the Materials Science and Diagnostics in Advanced Technologies Federal Common Use Center supported by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Shpeizman or V. I. Nikolaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpeizman, V.V., Nikolaev, V.I., Pozdnyakov, A.O. et al. The Effect of Texturing of Silicon Wafer Surfaces for Solar Photoelectric Transducers on Their Strength Properties. Tech. Phys. 65, 1123–1129 (2020). https://doi.org/10.1134/S1063784220070191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220070191

Navigation