Skip to main content
Log in

Electrical and Mechanical Properties of the High-Permittivity Ultra-High-Molecular-Weight Polyethylene-Based Composite Modified by Carbon Nanotubes

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A composite based on ultra-high-molecular-weight polyethylene (UHMWPE) added with 1 wt % of multiwalled carbon nanotubes (MWCNTs) with a high permittivity (ε = 4.5) and a low dielectric loss (tanδ = 10–2) in the frequency range from 100 Hz to 100 MHz has been synthesized, and its main mechanical characteristics have been studied. The material has a low (22 MPa) breaking strength, a high (700%) tensile elongation, and an abrasion resistance higher than that of pure UHMWPE by 37%. It is shown using the X-ray diffraction and differential scanning calorimetry data that the changes in the mechanical properties of the composite are related to the changes in the polymer matrix structure under the action of the high-intensity ultrasonic radiation used for embedding MWCNTs into the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. van der Werff and U. Heisserer, in Advanced Fibrous Composite Mater. Ballistic Protect, Ed. by X. Chen (Elsevier, 2016), Chap. 3, pp. 71–108. https://doi.org/10.1016/B978-1-78242-461-1.00003-0

    Book  Google Scholar 

  2. R. Marissen, Mater. Sci. Appl. 2 (5), 319 (2011). https://doi.org/10.4236/msa.2011.25042

    Article  Google Scholar 

  3. W. Li, D. Xiong, X. Zhao, L. Sun, and J. Liu, Mater. Des. 102, 162 (2016). https://doi.org/10.1016/j.matdes.2016.04.006

    Article  Google Scholar 

  4. K. Karthikeyan and B. P. Russell, Mater. Des. 63, 115 (2014). https://doi.org/10.1016/j.matdes.2014.05.069

    Article  Google Scholar 

  5. F. Ansaria, B. Gludovatz, A. Kozak, R. O. Ritchie, and L. A. Pruitt, J. Mech. Behav. Biomed. Mater. 60, 267 (2016). https://doi.org/10.1016/j.jmbbm.2016.02.014

    Article  Google Scholar 

  6. A. V. Maksimkin, F. S. Senatov, V. D. Danilov, K. S. Mostovaya, S. D. Kaloshkin, M. V. Gorshenkov, A. P. Kharitonov, and D. I. Chukov, Mendeleev Commun. 26 (4), 350 (2016). https://doi.org/10.1016/j.mencom.2016.07.028

    Article  Google Scholar 

  7. F. S. Senatov, A. N. Kopylov, N. Yu. Anisimova, M. V. Kiselevsky, and A. V. Maksimkin, Mater. Sci. Eng., C 48, 566 (2015). https://doi.org/10.1016/j.msec.2014.12.050

    Article  Google Scholar 

  8. J. C. Baena, J. Wu, and Z. Peng, Lubricants 3 (2), 413 (2015). https://doi.org/10.3390/lubricants3020413

    Article  Google Scholar 

  9. K. Plumlee and C. J. Schwartz, Wear 267 (5–8), 710 (2009). https://doi.org/10.1016/j.wear.2008.11.028

    Article  Google Scholar 

  10. D. S. Xiong, J. M. Lin, and D. L. Fan, Biomed. Mater. 1 (3), 175 (2006). https://doi.org/10.1088/1748-6041/1/3/013

    Article  ADS  Google Scholar 

  11. G. E. Selyutin, Yu. Yu. Gavrilov, O. E. Popova, E. N. Voskresenskaya, V. A. Poluboyarov, V. A. Voroshilov, and A. V. Turushev, RF Patent No. RU 2 381 242 C2, Byull. Izobret., No. 4 (2010).

  12. M. T. Sebastian, S. Thomas, and S. George, Appl. Electromagnet. Conf. (AEMC),2009, pp. 1–4. https://doi.org/10.1109/AEMC.2009.5430628

  13. Y. Kobayashi, T. Tanase, T. Tabata, T. Miwa, and M. Konno, J. Eur. Ceram. Soc. 28 (1), 117 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.05.007

    Article  Google Scholar 

  14. S.-H. Xie,  B.-K. Zhu,  X.-Z. Wei,  Z.-K. Xu,  and Y.-Y. Xu, Composites, Part A 36 (8), 1152 (2005). https://doi.org/10.1016/j.compositesa.2004.12.010

    Article  Google Scholar 

  15. K. M. Manu, S. Soni, V. R. K. Murthy, and M. T. Sebastian, J. Mater. Sci.: Mater. Electron. 24 (6), 2098 (2013). https://doi.org/10.1007/s10854-013-1064-y

    Article  Google Scholar 

  16. J. Varghese, D. R. Nair, P. Mohanan, and M. T. Sebastian, Phys. Chem. Chem. Phys. 17, 14943 (2015). https://doi.org/10.1039/c5cp01242b

    Article  Google Scholar 

  17. J. Macutkevic, A. Paddubskaya, P. Kuzhir, J. Banys, S. Maksimenko, V. L. Kuznetsov, I. N. Mazov, and D. V. Krasnikov, J. Nanosci. Nanotechnol. 14 (7), 5430 (2014). https://doi.org/10.1166/jnn.2014.8705

    Article  Google Scholar 

  18. Q. Li, Q. Xue, Q. Zheng, L. Hao, and X. Gao, Mater. Lett. 62 (26), 4229 (2008). https://doi.org/10.1016/j.matlet.2008.06.047

    Article  Google Scholar 

  19. L. J. Romasanta, M. Hernandez, M. F. López-Manchado, and R. Verdejo, Nanoscale Res. Lett. 6, 1 (2011). https://doi.org/10.1186/1556-276X-6-508

    Article  Google Scholar 

  20. B. Meschi Amoli, S. A. Ahmad Ramazani, and H. Izadi, J. Appl. Polym. Sci. 125, E453 (2012). https://doi.org/10.1002/app.36368

    Article  Google Scholar 

  21. S. L. Ruan, P. Gao, X. G. Yang, and T. X. Yu, Polymer 44 (19), 5643 (2003). https://doi.org/10.1016/S0032-3861(03)00628-1

    Article  Google Scholar 

  22. A. V. Maksimkin, S. D. Kaloshkin, M. S. Kaloshkina, M. V. Gorshenkov, V. V. Tcherdyntsev, K. S. Ergin, and I. V. Shchetinin, J. Alloys Compd. 536 (1), 538 (2012). https://doi.org/10.1016/j.jallcom.2012.01.151

    Article  Google Scholar 

  23. P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, Composites, Part A 41 (10), 1345 (2010). https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  24. M. O. Lisunova, Ye. P. Mamunya, N. I. Lebovka, and A. V. Melezhyk, Eur. Polym. J. 43 (3), 949 (2007). https://doi.org/10.1016/j.eurpolymj.2006.12.015

    Article  Google Scholar 

  25. A. Mierczynska, M. Mayne-L’Hermite, G. Boiteux, and J. K. Jeszka, J. Appl. Polym. Sci. 105 (1), 158 (2007). https://doi.org/10.1002/app.26044

    Article  Google Scholar 

  26. H. Pang, C. Chen, Y. Bao, J. Chen, X. Ji, J. Lei, and Z.-M. Li, Mater. Lett. 79, 96 (2012). https://doi.org/10.1016/j.matlet.2012.03.111

    Article  Google Scholar 

  27. Y. Bin, A. Yamanaka, Q. Chen, Y. Xi, X. Jiang, and M. Matsuo, Polym. J. 39 (6), 598 (2007). https://doi.org/10.1295/polymj.PJ2006229

    Article  Google Scholar 

  28. A. V. Eletskii, A. A. Knizhnik, B. V. Potapkin, and J. M. Kenny, Phys.-Usp. 58 (3), 209 (2015). https://doi.org/10.3367/UFNe.0185.201503a.0225

    Article  Google Scholar 

  29. T. Deplancke, O. Lame, S. Barrau, K. Ravi, and F. Dalmas, Polymer 111, 204 (2017). https://doi.org/10.1016/j.polymer.2017.01.040

    Article  Google Scholar 

  30. A. V. Maksimkin, S. D. Kaloshkin, M. S. Kaloshkina, M. V. Gorshenkov, V. V. Tcherdyntsev, K. S. Ergin, and I. V. Shchetinin, J. Alloys Compd. 536, S538 (2012). https://doi.org/10.1016/j.jallcom.2012.01.151

    Article  Google Scholar 

  31. A. V. Maksimkin, K. S. Mostovaya, F. S. Senatov, D. I. Chukov, S. G. Nematulloev, and L. K. Olifirov, Results Phys. 7, 1044 (2017). https://doi.org/10.1016/j.rinp.2017.02.024

    Article  ADS  Google Scholar 

  32. S. R. Bakshi, J. E. Tercero, and A. Agarwal, Composites, Part A 38 (12), 2493 (2007). https://doi.org/10.1016/j.compositesa.2007.08.004

    Article  Google Scholar 

  33. A. V. Maksimkin, A. P. Kharitonov, K. S. Mostovaya, S. D. Kaloshkin, M. V. Gorshenkov, F. S. Senatov, D. I. Chukov, and V. V. Tcherdyntsev, Composites, Part B 94, 292 (2016). https://doi.org/10.1016/j.compositesb.2016.03.061

    Article  Google Scholar 

  34. Y. A. Balogun and R. C. Buchanan, Composites Sci. Technol 70 (6), 892 (2010). https://doi.org/10.1016/j.compscitech.2010.01.009

    Article  Google Scholar 

  35. I. Mazova, V. L. Kuznetsov, I. A. Simonova, A. I. Stadnichenko, A. V. Ishchenko, A. I. Romanenko, E. N. Tkachev, and O. B. Anikeeva, Appl. Surf. Sci. 258 (17), 6272 (2012). https://doi.org/10.1016/j.apsusc.2012.03.021

    Article  ADS  Google Scholar 

  36. I. A. Markevich, G. E. Selyutin, N. A. Drokin, and B. A. Belyaev, Zh. Sib. Fed. Univ. Tekh. Tekhnol. 11 (2), 190 (2018). https://doi.org/10.17516/1999-494X-0022

    Article  Google Scholar 

  37. D. K. Pradhan, R. N. P. Choudhary, and B. K. Samantaray, Int. J. Electrochem. Sci. 3, 597 (2008).

    Google Scholar 

  38. S. K. Bhateja, S. M. Yarbrough, and E. H. Andrews, J. Macromol. Sci., Part B: Phys. 29 (1), 1 (1990). https://doi.org/10.1080/00222349008212332

    Article  ADS  Google Scholar 

  39. M. A. Kazakova, A. G. Selyutin, N. V. Semikolenova, A. V. Ishchenko, S. I. Moseenkov, M. A. Matsko, V. A. Zakharov, and V. L. Kuznetsova, Composites Sci. Technol. 167 (20), 148 (2018). https://doi.org/10.1016/j.compscitech.2018.07.046

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.A. Mats’ko, Cand. Chem. Sci., head of the laboratory of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, and his colleagues for help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Markevich.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markevich, I.A., Selyutin, G.E., Drokin, N.A. et al. Electrical and Mechanical Properties of the High-Permittivity Ultra-High-Molecular-Weight Polyethylene-Based Composite Modified by Carbon Nanotubes. Tech. Phys. 65, 1106–1113 (2020). https://doi.org/10.1134/S1063784220070129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220070129

Navigation