Skip to main content
Log in

Estimation of the Maximum Transverse Size of Multilayer Bimetallic Films for Self-Propagating High-Temperature Synthesis for the Ni/Al Structure as an Example

  • PHYSICS OF NANOSTRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Self-propagating high-temperature synthesis (solid-flame combustion) is simulated based on a layered model in which the product is formed between the layers of initial reactants due to solid-phase diffusion in nonisothermal conditions; in this case, the combustion wave propagates along these layers. It is found that cords of thickness up to 50 μm made of aluminium and nickel layers are fully converted into high-temperature melt. The results of calculation make it possible to optimize processes of welding and soldering of thermosensitive materials and parts of electronic components of various devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. P. Adams, Thin Solid Films 576, 98 (2015).

    Article  ADS  Google Scholar 

  2. A. G. Merzhanov and A. S. Mukas’yan, Solid-Flame Combustion (Torus Press, Moscow, 2007) [in Russian].

    Google Scholar 

  3. T. P. Weihs, Metallic Films for Electronic, Optical and Magnetic Applications, Ed. by K. Barmak and K. Coffey (Woodhead, Cambridge, 2014), pp. 160–243.

    Google Scholar 

  4. A. S. Rogachev, Russ. Chem. Rev. 77 (1), 21 (2008).

    Article  ADS  Google Scholar 

  5. B. B. Khina, Combustion Synthesis of Advanced Materials (Nova Science, 2010).

  6. A. S. Rogachev, S. G. Vadchenko, F. Baras, O. Politano, S. Rouvimov, N. V. Sachkova, M. D. Grapes, T.  P. Weihs, and A. S. Mukasyan, Combust. Flame 166, 158 (2016).

    Article  Google Scholar 

  7. A. P. Aldushin and B. E. Khaykin, Fiz. Goreniya Vzryva, No. 3, 313 (1974).

    Google Scholar 

  8. M. Salloum and O. M. Knio, Combust. Flame 157 (2), 288 (2010).

    Article  Google Scholar 

  9. I. E. Gunduz, K. Fadenberger, M. Kokonou, C. Rebholz, C. C. Doumanidis, and T. Ando, J. Appl. Phys. 105 (7), 074903 (2009).

    Article  ADS  Google Scholar 

  10. M. Vohra, M. Grapes, P. Swaminathan, T. P. Weihs, and O. M. Knio, J. Appl. Phys. 110 (12), 123521 (2011).

    Article  ADS  Google Scholar 

  11. T. Helander and J. Agren, Acta Mater. 47 (4), 1141 (1998).

    Article  Google Scholar 

  12. H. Wei, X. Sun, Q. Zheng, H. Guan, and Z. Hu, Acta Mater. 52 (9), 2645 (2004).

    Article  Google Scholar 

  13. O. E. Kvashenkina, P. G. Gabdullin, and A. V. Arkhipov, Proc. IEEE Int. Conf. Electrical Engineering and Photonics, EExPolytech, St. Petersburg, Russia,2018, pp. 202–206.

  14. V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds (Tomsk Univ., Tomsk, 1989) [in Russian].

    Google Scholar 

  15. G. M. Fritz, J. A. Grzyb, O. M. Knio, M. D. Grapes, and T. P. Weihs, J. Appl. Phys. 118 (13), 135101 (2015).

    Article  ADS  Google Scholar 

  16. A. S. Rogachev and A. S. Mukas’yan, Combustion for the Synthesis of Materials: An Introduction to Structural Macrokinetics (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  17. S. Danzi, M. Menétrey, J. Wohlwend, and R. Spolenak, ACS Appl. Mater. Interfaces 11 (45), 42479 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.V. Arkhipov for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Eidelman.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvashenkina, O.E., Eidelman, E.D., Osipov, V.S. et al. Estimation of the Maximum Transverse Size of Multilayer Bimetallic Films for Self-Propagating High-Temperature Synthesis for the Ni/Al Structure as an Example. Tech. Phys. 65, 1144–1149 (2020). https://doi.org/10.1134/S1063784220070117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220070117

Navigation