Skip to main content

Analysis of Electrostatic Interaction between Dimer Complexes. Part I: A Method for Selecting Inhibitors of APP Protein Derivatives

Abstract

We present an unconventional method that provides qualitative evaluation of the ability of amyloid peptides to form high-molecular-weight structures and enables us to resolve the stability issue of amyloid dimer complex by means of introduced quantitative descriptors, which are (i) the logarithm of the condition number of matrix of potential energy of paired electrostatic interaction between amino acid residues and (ii) the differential entropy for a multidimensional normal distribution, which enables us to predict the formation of higher-order structures such as oligomers, protofibrils, and fibrils, as the stability state is reached. Therefore, the main strategy for preventing amyloid formation upon their aggregation into high-molecular-weight structures is to ensure their stabilization at the level of dimer complexes.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. J. Nasica-Labouze, P. H. Nguyen, F. Sterpone, O. Berthoumieu, N.-V. Buchete, S. Coté, A. De Simone, A. J. Doig, P. Faller, A. Garcia, A. Laio, M. S. Li, S. Melchionna, N. Mousseau, Y. Mu, A. Paravastu, S. Pasquali, D. J. Rosenman, B. Strodel, B. Tarus, J. H. Viles, T. Zhang, C. Wang, and P. Derreumaux, Chem. Rev. 115 (9), 3518 (2015).

    Article  Google Scholar 

  2. V. Kumar, A. K. Abbas, N. Fausto, and J. Aster, Robbins and Cotran Pathologic Basis of Disease, 8th ed. (Elsevier, Philadelphia, 2010). Chap. 21–29.

    Google Scholar 

  3. J. Kang, H. G. Lemaire, A. Unterbeck, J. M. Salbaum, C. L. Masters, K. H. Grzeschik, G. Multhaup, K. Beyreuther, and B. Muller-Hill, Nature 325 (6106), 733 (1987).

    ADS  Article  Google Scholar 

  4. G. G. Glenner and C. W. Wong, Biochem. Biophys. Res. Commun. 120 (3), 885 (1984).

    Article  Google Scholar 

  5. J. Hardy and D. Allsop, Trends. Pharmacol. Sci. 12 (10), 383 (1991).

    Article  Google Scholar 

  6. D. Selkoe and J. Hardy, EMBO Mol. Med. 8 (6), 595 (2016).

    Article  Google Scholar 

  7. A. A. Kulesh, V. E. Drobakha, and V. V. Shestakov, Nevrologiya, Neiropsikhiatriya, Psikhosomatika 10 (3), 4 (2018).

    Google Scholar 

  8. T. Koshlan and K. Kulikov, Mathematical Modeling of Protein Complexes (Springer, 2018).

    Book  Google Scholar 

  9. K. G. Kulikov and T. V. Koshlan, Tech. Phys. 63 (8), 1101 (2018).

    Article  Google Scholar 

  10. T. V. Koshlan and K. G. Kulikov, Tech. Phys. 63 (8), 1115 (2018).

    Article  Google Scholar 

  11. A. N. Tyrsin and I. S. Sokolova, Matem. Model. 24 (1), 88 (2012).

    Google Scholar 

  12. Protein Data Bank, https://www.rcsb.org/ (cited December 6, 2019).

  13. Tian Qiu, Qian Liu, Yong-Xiang Chen, Yu-Fen Zhao, and Yan-Mei Li, J. Pept. Sci. 21 (7), 522 (2015).

    Article  Google Scholar 

  14. D. Kaden, A. Harmeier, C. Weise, L. M. Munter, V. Althoff, B. R. Rost, P. W. Hildebrand, D. Schmitz, M. Schaefer, R. Lurz, S. Skodda, R. Yamamoto, S. Arlt, U. Finckh, and G. Multhaup, EMBO Mol. Med. 4 (7), 647 (2012).

    Article  Google Scholar 

  15. K. Murakami, K. Irie, A. Morimoto, H. Ohigashi, M. Shindo, M. Nagao, T. Shimizu, and T. Shirasawa, Biochem. Biophys. Res. Commun. 294 (1), 5 (2002).

    Article  Google Scholar 

  16. J. Meinhardt, G. G. Tartaglia, A. Pawar, T. Christopeit, P. Hortschansky, V. Schroeckh, C. M. Dobson, M. Vendruscolo, and M. Fandrich, Protein Sci. 16 (6), 1214 (2007).

    Article  Google Scholar 

  17. A. Huet and P. Derreumaux, Biophys. J. 91 (10), 3829 (2006).

    ADS  Article  Google Scholar 

  18. C. Nilsberth, A. Westlind-Danielsson, C. B. Eckman, M. M. Condron, K. Axelman, C. Forsell, C. Stenh, J. Luthman, D. B. Teplow, S. G. Younkin, J. Naslund, and L. Lannfelt, Nat. Neurosci. 4 (9), 887 (2001).

    Article  Google Scholar 

  19. M. C. Owen, D. Gnutt, M. Gao, S. K. T. S. Wärmländer, J. Jarvet, A. Gräslund, R. Winter, S. Ebbinghaus, and B. Strodel, Chem. Soc. Rev. 48 (14), 3946 (2019).

    Article  Google Scholar 

  20. X. Yang, G. Meisl, B. Frohm, E. Thulin, T. P. J. Knowles, and S. Linse, Proc. Nat. Acad. Sci. U.S.A. 115 (26), E5849 (2018).

    Article  Google Scholar 

  21. S. Fossati, J. Cam, J. Meyerson, E. Mezhericher, I. A. Romero, P. O. Couraud, B. B. Weksler, J. Ghiso, and A. Rostagno, FASEB J. 24 (1), 229 (2010).

    Article  Google Scholar 

  22. E. C. Schulte, A. Fukumori, B. Mollenhauer, H. Hor, T. Arzberger, R. Perneczky, and A. Kurz, Eur. J. Hum. Genet. 23 (10), 1328 (2015).

    Article  Google Scholar 

  23. APP|ALZFORUM, https://www.alzforum.org/mutations/app (cited December 6, 2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Koshlan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koshlan, T.V., Kulikov, K.G. Analysis of Electrostatic Interaction between Dimer Complexes. Part I: A Method for Selecting Inhibitors of APP Protein Derivatives. Tech. Phys. 65, 1167–1174 (2020). https://doi.org/10.1134/S1063784220070087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220070087