Skip to main content
Log in

Simulation of the Dynamic Breakdown of Ammonium-Perchlorate Single Crystals

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Dynamic breakdown of ammonium perchlorate single crystals is numerically simulated. A system of differential equations that describe processes in an equivalent circuit of a pulsed voltage oscillator, a kinetic equation of impact multiplication of electrons, and a heat-balance equation are simultaneously solved. The breakdown strength of ammonium perchlorate is calculated in the dynamic mode versus interelectrode distance and leading edge of a high-voltage pulse. The calculated results are in reasonable agreement with the experimental data on the dynamic breakdown of ammonium perchlorate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. A. Zakrevskii, V. A. Pakhotin, and N. T. Sudar, Tech. Phys. 63, 1814 (2018). https://doi.org/10.21883/JTF.2019.01.46972.98-18

    Article  Google Scholar 

  2. V. A. Zakrevskii, V. A. Pakhotin, and N. T. Sudar, Tech. Phys. 62, 276 (2017). https://doi.org/10.21883/JTF.2017.02.44133.1907

    Article  Google Scholar 

  3. V. A. Zakrevskii and N. T. Sudar’, Phys. Solid State 55, 1395 (2013). https://doi.org/10.1134/S1063783413070354

    Article  ADS  Google Scholar 

  4. V. A. Zakrevskii and N. T. Sudar’, Phys. Solid State 47, 961 (2005).

    Article  ADS  Google Scholar 

  5. I. V. Smirnov, R. Springhetti, V. A. Morozov, and A. A. Lukin, Tech. Phys. 63, 152 (2018). https://doi.org/10.21883/JTF.2018.01.45500.2177

    Article  Google Scholar 

  6. D. N. Sadovnichii, Yu. M. Milekhin, S. A. Lopatkin, T. S. Skripina, S. A. Malinin, and I. N. Gross, Combust., Explos. Shock Waves 55, 220 (2019). https://doi.org/10.15372/FGV20190211

    Article  Google Scholar 

  7. D. N. Sadovnichii, Yu. M. Milekhin, S. A. Lopatkin, V. F. Vazhov, S. A. Gusev, and E. A. Butenko, Combust., Explos. Shock Waves 46, 464 (2010).

    Article  Google Scholar 

  8. G. G. Savenkov, S. A. Rashkovskii, V. A. Morozov, A. A. Lukin, I. A. Os’kin, V. A. Bragin, and A. V. Shamil’yanov, Tech. Phys. 62, 1337 (2017). https://doi.org/10.1134/S1063784217090225

    Article  Google Scholar 

  9. V. V. Boldyrev, Solids Reactivity (Sib. Otdel. RAN, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  10. L. K. Gusachenko, V. E. Zarko, V. Ya. Zyryanov, and V. P. Bobryshev, Solid Fuel Combustion Modeling (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  11. B. K. Laptenkov, A. V. Raevskii, G. B. Manelis, and S. A. Abrukov, Dokl. Akad. Nauk SSSR 250, 1185 (1980).

    Google Scholar 

  12. B. K. Laptenkov and S. A. Abrukov, in Combustion Physics and Research Methods, Collection of Articles (Cheboksary, 1978), No. 8, p. 34 [in Russian].

  13. I. G. Khaneft, in Proceedings of the 10th All-Union Workshop on Kinetics and Mechanism of Chemical Reactions in Solids, Chernogolovka,1989, p. 105.

  14. Yu. N. Sukhushin and I. G. Khaneft, J. Appl. Mech. Tech. Phys. 31, 351 (1990).

    Article  ADS  Google Scholar 

  15. I. G. Khaneft and A. V. Khaneft, in Energetic Materials for High Performance, Insensitive Munitions and Zero Pollution, Proceedings of the 41st International Annual Conference of ICT, Federal Republic of Germany, Karlsruhe, June 23–26,2010, p. 61-1.

  16. I. G. Khaneft and A. V. Khaneft, Khim. Fiz. Mezosk. 15, 034 (2013).

  17. I. G. Khaneft and A. V. Khaneft, Tech. Phys. 40, 631 (1995).

    Google Scholar 

  18. I. G. Khaneft and A. V. Khaneft, Tech. Phys. 45, 423 (2000).

    Article  Google Scholar 

  19. W. Franz, Dielektrischer Durchschlag (Springer, Berlin, 1956).

    Book  Google Scholar 

  20. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  21. Yu. K. Shalabutov, Introduction to Semiconductor Physics (Nauka, Leningrad, 1969) [in Russian].

    Google Scholar 

  22. B. I. Golovanov, G. F. Novikov, and M. V. Alfimov, Zh. Nauch. Prikl. Fotogr. Kinematogr. 36, 335 (1991).

    Google Scholar 

  23. Yu. V. Frolov, A. A. Zenin, and V. P. Yakovlev, Fiz. Goreniya Vzryva 5, 544 (1969).

    Google Scholar 

  24. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Gunpowder (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  25. A. E. Mudrov, Numerical Methods for PCs in BASIC, Fortran and Pascal (RASKO, Tomsk, 1991) [in Russian].

    Google Scholar 

  26. A. G. Keenan and R. F. Siegmund, Quart. Rev. Chem. Soc. London 23, 430 (1969). https://doi.org/10.1039/QR9692300430

    Article  Google Scholar 

  27. V. I. Karasev, A. I. Korobov, and M. G. Abalmazova, Radiotekh. Elektron. 16, 405 (1971).

    Google Scholar 

  28. A. A. Vorob’ev and G. A. Vorob’ev, Electrical Breakdown and Destruction of Solids (Vysshaya Shkola, Moscow, 1966) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 18-13-00031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khaneft.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaneft, A.V. Simulation of the Dynamic Breakdown of Ammonium-Perchlorate Single Crystals. Tech. Phys. 65, 874–879 (2020). https://doi.org/10.1134/S1063784220060146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220060146

Navigation