Electronic Work Function of Carbon Nanocomposite Films According to Vacuum and Atmospheric Photoemission


Using the methods of optically stimulated electron emission (OSEE) and ambient pressure photoemission spectroscopy (APS), the energy characteristics of carbyne-containing films on copper and silicon substrates have been studied. The average contact potential difference and the work function were determined, and the positions of the Fermi level for carbyne-containing films of various thicknesses were calculated. It was found that the electrons work function and the position of the Fermi level of the studied film samples do not depend on the film thickness and the type of substrate. The information content of the OSEE and APS methods for evaluating the quality of carbon coatings on substrates is shown.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    L. Mingjie, ACS Nano 7, 10075 (2013). https://doi.org/10.1021/nn404177r

    Article  Google Scholar 

  2. 2

    B. Christopher and N. Goldman, J. Phys. Chem. C 119, 21605 (2015). https://doi.org/10.1021/acs.jpcc.5b03781

  3. 3

    P. Bitao, Sci. Adv. 1, e1500857 (2015). https://doi.org/10.1126/sciadv.1500857

    ADS  Article  Google Scholar 

  4. 4

    A. M. Sladkov, V. I. Kasatochkin, V. V. Korshak, and Yu. P. Kudryavtsev, Inventor’s Diploma No. 107, Byull. Izobret., No. 6 (1972).

  5. 5

    Yu. P. Kudryavtsev, M. B. Guseva, and V. G. Babaev, Carbon 30, 213 (1992).

    Article  Google Scholar 

  6. 6

    H. Luth, Solid Surfaces, Interfaces and Thin Films (Springer, Heidelberg, 2010).

    Book  Google Scholar 

  7. 7

    A. F. Zatsepin, E. A. Buntov, D. A. Zatsepin, D. A. Bokizoda, M. B. Guseva, S. P. Vyatkina, and A. V. Kas’yanova, Yad. Fiz. Inzhin. 9 (1), 94 (2018).

    Google Scholar 

  8. 8

    E. A. Buntov, A. F. Zatsepin, A. I. Slesarev, Yu. V. Shchapova, S. Challinger, and I. Baikie, Carbon 152, 388 (2019).

    Article  Google Scholar 

  9. 9

    J. R. Harwell, T. K. Baikie, I. D. Baikie, J. L. Payne, C. Ni, J. T. S. Irvine, G. A. Turnbull, and I. D. W. Samuel, Phys. Chem. Chem. Phys. 18, 19738 (2016).

    Article  Google Scholar 

  10. 10

    K. J. Rietwyk, D. A. Keller, K. Majhi, A. Ginsburg, M. Priel, H. N. Barad, A. Y. Anderson, and A. Zaban, Adv. Mater. Interfaces 4, 1700136 (2017).

    Article  Google Scholar 

  11. 11

    I. D. Baikie, A. C. Grain, J. Sutherland, and J. Law, Appl. Surf. Sci. 323, 45 (2014).

    ADS  Article  Google Scholar 

  12. 12

    E. A. Buntov and A. F. Zatsepin, Register of Programs for Electronic Computers No. 2008614289 (2008).

  13. 13

    E. O. Kane, Phys. Rev. 127, 131 (1962).

    ADS  Article  Google Scholar 

  14. 14

    Yu. E. Prazdnikov, A. D. Bozhko, M. B. Guseva, and N. D. Novikov, Vestn. Mosk. Univ., Ser. Fiz. Astron., No. 5, 37 (2004).

Download references


The authors are grateful to Professor V.D. Kochakova for her help in the preparation of LCC films, as well as Iain Baikie for help in measuring photoelectron emission at atmospheric pressure.


This work was performed within the framework of state order of the Ministry of Education and Science of the Russian Federation no. 3.1485.2017/4.6 with the support of decree no. 211 of the Government of the Russian Federation, contract no. 02.A03. 21.0006.

Author information



Corresponding author

Correspondence to D. A. Boqizoda.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boqizoda, D.A., Zatsepin, A.F., Buntov, E.A. et al. Electronic Work Function of Carbon Nanocomposite Films According to Vacuum and Atmospheric Photoemission. Tech. Phys. 65, 941–945 (2020). https://doi.org/10.1134/S1063784220060055

Download citation