Skip to main content
Log in

Modification of the Structure of Ti–Al–Si–Cu–N Gradient Coatings by Mechanical Tests

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The structural state in the zones of indentation and scratch testing of Ti–Al–Si–Cu–N gradient coatings has been studied using dark-field electron microscopy for analyzing the bending-torsion of a crystalline lattice. It has been found that the strength properties of a substrate, which determine the degree of plastic relaxation of the applied load, are important for modifying the structure of coatings. An increase in the bending of a crystalline lattice with respect to the undeformed state, heterogeneity, and anisotropy of its values with respect to the point and axis of applied load have been found for the material under the indenter top. The formation of strips of localized deformation, in which an increase in crystal sizes, a decrease in the bending of a crystalline lattice, and residual local stresses are observed, has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. T. Tilbrook, D. J. Paton, Z. Xie, and M. Hoffman, Acta Mater. 55, 2489 (2007).

    Article  Google Scholar 

  2. J. Li and W. Beres, Wear 260, 1232 (2006).

    Article  Google Scholar 

  3. L. W. Ma, J. M. Cairney, M. Hoffman, and P. R. Munroe, Surf. Coat. Technol. 192, 11 (2005).

    Article  Google Scholar 

  4. N. Verna, S. Cadambi, V. Jayaram, and S. K. Biswas, Acta Mater. 60, 3063 (2012).

    Article  Google Scholar 

  5. Z. H. Xie, M. Hoffman, P. Munroe, A. Bendavid, and P. J. Martin, Acta Mater. 56, 852 (2008).

    Article  Google Scholar 

  6. M. Parlinska-Wojtan, S. Meier, and J. Patscheider, Thin Solid Films 518, 4890 (2010).

    Article  ADS  Google Scholar 

  7. K. Yalamanchili, R. Forsén, E. Jiménez-Piqué, M. P. Johansson Jësaar, J. J. Roa, N. Ghafoor, and M. Odén, Surf. Coat. Technol. 258, 1100 (2014).

    Article  Google Scholar 

  8. Z. T. Wu, Z. B. Qi, D. F. Zhang, and Z. C. Wang, Mater. Lett. 164, 120 (2016).

    Article  Google Scholar 

  9. J. J. Roa, E. Jiménez-Piqué, R. Martinéz, J. M. Tarrado, R. Rodríquez, and L. Leanes, Thin Solid Films 571, 308 (2014).

    Article  ADS  Google Scholar 

  10. N. J. M. Carvalho and J. Th. M. de Hosson, Acta Mater. 54, 1857 (2006).

    Article  Google Scholar 

  11. Z. Wu, X. Zhong, Z. Wang, W. Dai, and Q. Wang, Coatings 8, 11 (2018).

    Article  Google Scholar 

  12. S. Bigelow and S. L. Shen, Surf. Coat. Technol. 350, 779 (2018).

    Article  Google Scholar 

  13. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  ADS  Google Scholar 

  14. S. V. Ovchinnikov and Yu. P. Pinzhin, Russ. Phys. J. 59, 799 (2016).

    Article  Google Scholar 

  15. S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Thin Solid Films 476, 1 (2005).

    Article  ADS  Google Scholar 

  16. A. D. Korotaev, A. N. Tyumentsev, and V. F. Sukhovarov, Dispersion Hardening of Refractory Metals (Nauka, Novosibirsk, 1989) [in Russian].

    Google Scholar 

  17. M. A. Meyers, A. Mishra, and D. J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  18. A. N. Tyumentsev, A. D. Korotaev, and Yu. P. Pinzhin, Fiz. Mezomekh. 7, 35 (2004).

    Google Scholar 

  19. N. J. M. Carvalho, E. Zoestbergen, B. J. Kooi, and J. Th. M. de Hosson, Thin Sold Films 429, 179 (2003).

    Article  ADS  Google Scholar 

  20. I. A. Ovid’ko, in Nanostructured Coatings, Ed. by A. Cavaleiro and J. Th. M. de Hosson (Springer, New York, 2006), p. 78.

    Google Scholar 

  21. M. Jin, A. M. Minor, and J. W. Morris, Jr., Thin Solid Films 515, 3202 (2007).

    Article  ADS  Google Scholar 

  22. M. Yu. Gutkin and N. K. Dynkin, Phys. Solid State 54, 798 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Program of Basic Scientific Research of the State Academy of Sciences of the Russian Federation for 2013−2020, direction III.23 when using the equipment of the Tomsk Materials Science Center for Collective Use of the Tomsk State University and the Nanotech Center for Collective Use of the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Ovchinnikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Astrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, S.V. Modification of the Structure of Ti–Al–Si–Cu–N Gradient Coatings by Mechanical Tests. Tech. Phys. 65, 783–790 (2020). https://doi.org/10.1134/S1063784220050199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220050199

Navigation