Skip to main content
Log in

Effect of Cr and Ni on Phase Formation in a Mechanically Synthesized Nanocomposite Based on Fe75C25

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The formation and doping of phases during mechanical synthesis followed by annealing in the (Fe0.80Cr0.05Ni0.15)75C25 alloy are studied by the method of X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. It is shown that after mechanical synthesis, the nanocomposite contains mainly two phases (amorphous phase and cementite A). During annealing, as a result of crystallization of the amorphous phase, cementite B is formed, in which the nickel concentration is higher than in mechanically synthesized cementite A. Upon an increase in the annealing temperature, austenite with a nonuniform nickel concentration is formed. The Curie temperature of such austenite reaches 500°C. It is established that cementite in mechanically synthesized nanocomposite (Fe,Cr,Ni)75C25 has a higher stability to temperature variations than mechanically synthesized composite (Fe,Ni)75C25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. J. Campbell, G. M. Wang, A. Calka, and W. A. Kaczmarek, Mater. Sci. Eng. A 226–228, 75 (1997). https://doi.org/10.1016/S0921-5093(97)80027-5

    Article  Google Scholar 

  2. M. Umemoto, Y. Todaka, T. Takahashi, P. Li, R. Tokumiya, and K. Tsuchiya, Mater. Sci. Eng. A 375–377, 894 (2004). https://doi.org/10.1016/j.msea.2003.10.285

    Article  Google Scholar 

  3. R. Nowosielski and W. Pilarczyk, J. Mater. Proces. Technol. 162–163, 373 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.116

    Article  Google Scholar 

  4. Z. Q. Lv, F. C. Zhang, S. H. Sun, Z. H. Wang, P. Jiang, W. H. Zhang, and W. T. Fu, Comput. Mater. Sci. 44, 690 (2008). https://doi.org/10.1016/j.commatsci.2008.05.006

    Article  Google Scholar 

  5. V. A. Barinov, V. A. Kazantsev, and V. T. Surikov, Phys. Met. Metallogr. 115, 576 (2014). https://doi.org/10.7868/S0015323014060023

    Article  ADS  Google Scholar 

  6. D. Chaira, B. K. Mishra, and S. Sangal, J. Alloys Compd. 474, 396 (2009). https://doi.org/10.1016/j.jallcom.2008.06.099

    Article  Google Scholar 

  7. A. I. Ul’yanov, E. P. Elsukov, A. A. Chulkina, A. V. Zagainov, N. B. Arsent’eva, G. N. Konygin, V. F. Novikov, and V. V. Isakov, Russ. J. Nondestr. Test. 42, 452 (2006).

    Article  Google Scholar 

  8. V. A. Volkov, I. A. El’kin, and A. A. Chulkina, Khim. Fiz. Mezosk. 18, 248 (2016).

    Google Scholar 

  9. E. Houdremont, Handbuch der Sonderstahlkunde (Springer, Berlin, 1943), Vol. 1.

    Book  Google Scholar 

  10. R. Zimmermann and K. Günther, Metallurgie und Werkstofftechnik—ein Wissensspeicher (Grundstoffindustrie, Leipzig, 1977).

    Google Scholar 

  11. M. A. Konyaeva and N. I. Medvedeva, Phys. Solid State 51, 2084 (2009).

    Article  ADS  Google Scholar 

  12. A. A. Chulkina, A. I. Ulyanov, A. L. Ulyanov, I. A. Baranova, A. V. Zagainov, and E. P. Elsukov, Phys. Met. Metallogr. 116, 19 (2015). https://doi.org/10.7868/S0015323014100052

    Article  ADS  Google Scholar 

  13. A. I. Ul’yanov, A. A. Chulkina, V. A. Volkov, A. L. Ul’yanov, and A. V. Zagainov, Phys. Met. Metallogr. 118, 691 (2017). https://doi.org/10.7868/S001532301705014X

    Article  ADS  Google Scholar 

  14. E. P. Elsukov, A. L. Ul’yanov, and D. A. Vytovtov, Bull. Russ. Acad. Sci.: Phys. 71, 1253 (2007).

    Article  Google Scholar 

  15. L. V. Dobysheva, Bull. Russ. Acad. Sci.: Phys. 81, 798 (2017). https://doi.org/10.7868/S0367676517070079

    Article  Google Scholar 

  16. E. P. Elsukov, V. M. Fomin, D. A. Vytovtov, G. A. Dorofeev, A. V. Zagainov, N. B. Arsent’eva, and S. F. Lomaeva, Phys. Met. Metallogr. 100, 251 (2005).

    Google Scholar 

  17. E. E. Yurchikov, A. Z. Menshikov, and V. A. Tzurin, in Proceedings of the Conference on Applied Mössbauer Effect, Tihany, 1969 (Hungarian Akademy of Sciences, Budapest, 1971), p. 406.

Download references

Funding

This study was performed under State assignment (State registration no. NIR AAAA-A17-117022250038-7) and was supported in part by the Program of Fundamental Research of the Ural Branch, Russian Academy of Sciences (project no. 18-10-2-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chulkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chulkina, A.A., Ulyanov, A.I., Volkov, V.A. et al. Effect of Cr and Ni on Phase Formation in a Mechanically Synthesized Nanocomposite Based on Fe75C25. Tech. Phys. 65, 754–761 (2020). https://doi.org/10.1134/S1063784220050072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220050072

Navigation