Skip to main content
Log in

Detection of the Electric Potential Surface Distribution with a Local Probe Based on a Field Effect Transistor with a Nanowire Channel

  • EXPERIMENTAL INSTRUMENTS AND TECHNIQUE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A non-destructive method of scanning probe microscopy for simultaneous measurements of the surface topography and electric field (charge, potential) distribution is demonstrated. The surface is scanned by the tuning fork method, the interaction with the surface is carried out by the sharp edge of the silicon chip mounted on one of the prong of the quartz resonator. The detection of electric potentials was performed using a field-effect transistor with a nanowire channel formed at the apex of the probe. Due to the low Q factor of the oscillatory system, scanning with standard algorithms of probe movement leads to fast wearing and even destruction of the apex of the probe. An original scanning algorithm was developed that minimizes the interaction time between the probe and the object under study. The minimal time at each scanning surface point is 1.0–1.6 ms and is determined response time of the field-effect transistor to a change in the detected electric field (the measuring time per frame is 20–30 min). The spatial resolution of the method is 10 nm for topography and 20 nm for the sample field profile. The field resolution of our chips is in the range of 2–5 mV and is determined by the sensitivity of the nanowire of the field effect transistor and the distance from the nanowire to the probe apex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991). https://doi.org/10.1063/1.105227

    Article  ADS  Google Scholar 

  2. M. Ligowski, D. Moraru, M. Anwar, T. Mizuno, R. Jablonski, and M. Tabe, Appl. Phys. Lett. 93, 142101 (2008). https://doi.org/10.1063/1.2992202

    Article  ADS  Google Scholar 

  3. C. C. Williams, W. P. Hough, and S. A. Rishton, Appl. Phys. Lett. 55, 203 (1989). https://doi.org/10.1063/1.102096

    Article  ADS  Google Scholar 

  4. J. R. Matey and J. Blanc, Appl. Phys. Lett. 57, 1437 (1985). https://doi.org/10.1063/1.334506

    Article  Google Scholar 

  5. H. Park, J. Jung, D. K. Min, S. Kim, and S. Hong, Appl. Phys. Lett. 84, 1734 (2004). https://doi.org/10.1063/1.1667266

    Article  ADS  Google Scholar 

  6. S. H. Lee, G. Lim, W. Moon, H. Shin, and C. W. Kim, Ultramicroscopy 108, 1094 (2008). https://doi.org/10.1016/j.ultramic.2008.04.034

    Article  Google Scholar 

  7. K. Shin, D. S. Kang, S. H. Lee, and W. Moon, Ultramicroscopy 159, 1 (2015). https://doi.org/10.1016/j.ultramic.2015.07.007

    Article  Google Scholar 

  8. H. Ko, K. Ryu, H. Park, C. Park, D. Jeon, Y. K. Kim, J. Jung, D. K. Min, Y. Kim, H. N. Lee, Y. Park, H. Shin, and S. Hong, Nano Lett. 11, 1428 (2011). https://doi.org/10.1021/nl103372a

    Article  ADS  Google Scholar 

  9. H. T. A. Brenning, S. E. Kubatkin, D. Erts, S. G. Kafanov, T. Bauch, and P. Delsingat, Nano Lett. 6, 937 (2006). https://doi.org/10.1021/nl052526t

    Article  ADS  Google Scholar 

  10. M. J. Yoo, T. A. Fulton, H. F. Hess, R. L. Willett, L. N. Dunkleberger, R. J. Chichester, L. N. Pfeiffer, and K. W. West, Science (Washington, DC, U. S.). 276, 579 (1997). https://doi.org/10.1126/science.276.5312.579

    Article  Google Scholar 

  11. M. Li, H. X. Tang, and M. L. Roukes, Nat. Nanotechnol. 2, 114 (2007). https://doi.org/10.1038/nnaN2006.208

    Article  ADS  Google Scholar 

  12. X. Cui, M. Freitag, R. Martel, L. Brus, and P. Avouris, Nano Lett. 3, 783 (2003). https://doi.org/10.1021/nl034193a

    Article  ADS  Google Scholar 

  13. D. C. Coffey and D. C. Ginger, Nat. Mater. 5, 735 (2006). https://doi.org/10.1038/nmat1712

    Article  ADS  Google Scholar 

  14. R. Borgani, D. Forchheimer, J. Bergqvist, P. A. Thoren, O. Inganas, and D. B. Haviland, Appl. Phys. Lett. 105, 143113 (2014). https://doi.org/10.1063/1.4897966

    Article  ADS  Google Scholar 

  15. K. Maehashi, T. Katsura, K. Kerman, Y. Takamura, K. Matsumoto, and E. Tamiya, Anal. Chem. 79, 782 (2007). https://doi.org/10.1021/ac060830g

    Article  Google Scholar 

  16. K. I. Chen, B. R. Li, and Y. T. Chen, Nano Today. 6, 131 (2011). https://doi.org/10.1016/j.nantod.2011.02.001

    Article  Google Scholar 

  17. D. S. Kim, Y. T. Jeong, H. J. Park, J. K. Shin, P. Choi, J. H. Lee, and G. Lim, Biosens. Bioelectron. 20, 69 (2004). https://doi.org/10.1016/j.bios.2004.01.025

    Article  Google Scholar 

  18. R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, Nat. Nanotechnol. 7, 191 (2012). https://doi.org/10.1038/nnaN2011.226

    Article  ADS  Google Scholar 

  19. Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai, and C. M. Lieber, Nat. Nanotechnol. 9, 142 (2014). https://doi.org/10.1038/nnaN2013.273

    Article  ADS  Google Scholar 

  20. G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, A. Trifonov, I. Andreeva, O. Ignatenko, A. Egorov, and M. Rubtsova, Biosens. Bioelectron. 88, 283 (2017). https://doi.org/10.1016/j.bios.2016.08.054

    Article  Google Scholar 

  21. M. Rubtsova, G. Presnova, D. Presnov, V. Krupenin, V. Grigorenko, and A. Egorov, Proc. Technol. 27, 234 (2017). https://doi.org/10.1016/j.protcy.2017.04.099

    Article  Google Scholar 

  22. V. A. Krupenin, D. E. Presnov, A. B. Zorin, and J. Niemeyer, Phys. B: Condens. Matter 284–288, 1800 (2000). https://doi.org/10.1016/S0921-4526(99)02990-7

    Article  ADS  Google Scholar 

  23. V. V. Shorokhov, D. E. Presnov, S. V. Amitonov, Yu. A. Pashkin, and V. A. Krupenin, Nanoscale 9, 613 (2017). https://doi.org/10.1039/C6NR07258E

    Article  Google Scholar 

  24. S. A. Dagesyan, V. V. Shorokhov, D. E. Presnov, E. S. Soldatov, A. S. Trifonov, and V. A. Krupenin, Nanotechnology 28, 225304 (2017). https://doi.org/10.1088/1361-6528/aa6dea

    Article  ADS  Google Scholar 

  25. D. E. Presnov, S. A. Dagesyan, I. V. Bozhev, V. V. Shorokhov, A. S. Trifonov, A. A. Shemukhin, I. V. Sapkov, I. G. Prokhorova, O. V. Snigirev, and V. A. Krupenin, Mosc. Univ. Phys. 74, 165 (2019). https://doi.org/10.3103/S0027134919020164

    Article  Google Scholar 

  26. J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar, Appl. Phys. Lett. 53, 2717 (1988). https://doi.org/10.1063/1.100162

    Article  ADS  Google Scholar 

  27. K. Domansky, Y. Leng, and C. C. Williams, Appl. Phys. Lett. 63, 1513 (1993). https://doi.org/10.1063/1.110759

    Article  ADS  Google Scholar 

  28. J. Salfi, I. Savelyev, M. Blumin, S. V. Nair, and H. E. Ruda, Nat. Nanotechnol. 5, 737 (2010). https://doi.org/10.1038/nnaN2010.180

    Article  ADS  Google Scholar 

  29. D. E. Presnov, S. V. Amitonov, P. A. Krutitskii, V. V. Kolybasova, I. A. Devyatov, V. A. Krupenin, and I. I. Soloviev, Beilstein J. Nanotechnol. 4, 330 (2013). https://doi.org/10.3762/bjnaN4.38

    Article  Google Scholar 

  30. A. S. Trifonov, D. E. Presnov, I. V. Bozhev, D. A. Evplov, V. Desmaris, and V. A. Krupenin, Ultramicroscopy 179, 33 (2017). https://doi.org/10.1016/j.ultramic.2017.03.030

    Article  Google Scholar 

  31. D. E. Presnov, I. V. Bozhev, A. V. Miakonkikh, S. G. Simakin, A. S. Trifonov, and V. A. Krupenin, J. Appl. Phys. 123, 054503 (2018). https://doi.org/10.1063/1.5019250

    Article  ADS  Google Scholar 

  32. P. J. de Pablo, J. Colchero, J. Gómez-Herrero, and A. M. Baró, Appl. Phys. Lett. 73, 3300 (1998). https://doi.org/10.1063/1.122751

    Article  ADS  Google Scholar 

  33. I. V. Bykov, Extended Abstract of Cand. Sci. Dissertation (Moscow, 2010) [in Russian]. https://search.rsl.ru/ru/record/01004651194

  34. I. V. Bozhev, A. S. Trifonov, D. E. Presnov, S. A. Dagesyan, A. A. Dorofeev, I. I. Tsiniaikin, and V. A. Krupenin, Mosc. Univ. Phys. Bull. 75, 70 (2020). https://doi.org/10.3103/S0027134920010063

  35. L. Reimer, in Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, Berlin, 1985), p. 53. https://doi.org/10.1007/978-3-662-13562-4

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

I.V. Bozhev thanks the BASIS Foundation for the Advancement of Theoretical Physics and Mathematics. The research infrastructure of the “Educational and Methodical Center of Lithography and Microscopy,” M.V. Lomonosov Moscow State University was used.

Funding

This study was supported by the Russian Science Foundation (project no. 16-12-00072).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Bozhev or A. S. Trifonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhev, I.V., Krupenin, V.A., Presnov, D.E. et al. Detection of the Electric Potential Surface Distribution with a Local Probe Based on a Field Effect Transistor with a Nanowire Channel. Tech. Phys. 65, 832–838 (2020). https://doi.org/10.1134/S1063784220050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220050059

Navigation