Skip to main content
Log in

Photovoltaic Fields and the Secondary Structure of Nominally Pure Lithium Niobate Crystals Grown from a Boron-Doped Furnace Charge

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It has been shown that the growth of nominally pure lithium niobate crystals from a nonmetal (boron)-structured melt makes it possible to control the secondary phase, optical homogeneity, photoelectric fields, and bandgap of the material. From the characteristics of photoinduced light scattering, the photovoltaic and diffusion field strengths in nominally pure LiNbO3 : B crystals have been determined. It has been shown that the diffusion field governing the concentration of shallow electron traps in LiNbO3 : B crystals is between diffusion fields in crystals having a congruent and stoichiometric composition and depends on boron concentration in the charge. It has been found that the bandgap in LiNbO3 : B crystals is the same as in the stoichiometric crystal but the optical homogeneity of LiNbO3 : B crystals is closer to that of the congruent crystal. In addition, the concentration of OH groups in LiNbO3 : B crystals is lower and their arrangement in the structure is more regular than in the congruent crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. V. Sidorov, M. N. Palatnikov, A. A. Yanichev, R. A. Titov, and N. A. Teplyakova, Opt. Spectrosc. 121, 1024 (2016). https://doi.org/10.1134/S0030400X16070195

    Article  Google Scholar 

  2. N. V. Sidorov, M. N. Palatnikov, A. A. Yanichev, R. A. Titov, and N. A. Teplyakova, J. Appl. Spectrosc. 83, 750 (2016).

    Article  ADS  Google Scholar 

  3. M. N. Palatnikov, N. V. Sidorov, R. A. Titov, N. A. Teplyakova, and O. V. Makarova, Inorg. Mater.: Appl. Res. 9, 817 (2018). https://doi.org/10.1134/S2075113318050222

    Article  Google Scholar 

  4. N. V. Sidorov, N. A. Teplyakova, R. A. Titov, and M. N. Palatnikov, Sib. Fiz. Zh. 13 (2), 70 (2018). https://doi.org/10.25205/2541-9447-2018-13-2-70-79

    Article  Google Scholar 

  5. N. V. Sidorov, N. A. Teplyakova, R. A. Titov, and M. N. Palatnikov, Tech. Phys. 63, 1758 (2018). https://doi.org/10.1134/S1063784218120198

    Article  Google Scholar 

  6. O. V. Makarova, M. N. Palatnikov, I. V. Biryukova, N. A. Teplyakova, and N. V. Sidorov, Inorg. Mater. 54, 49 (2018). https://doi.org/10.1134/S0020168518010089

    Article  Google Scholar 

  7. N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, and A. V. Syui, J. Appl. Spectrosc. 85, 717 (2018).

    Article  ADS  Google Scholar 

  8. V. Ya. Shur, A. R. Akhmatkhanov, and I. S. Baturin, Appl. Phys. Rev. 2, 040604 (2015). https://doi.org/10.1063/1.4928591

    Article  ADS  Google Scholar 

  9. N. V. Sidorov and Yu. A. Serebryakov, Ferroelectrics 160, 101 (1994).

    Article  Google Scholar 

  10. A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgar, Appl. Phys. Rev. 2, 040601 (2015). https://doi.org/10.1063/1.4929917

    Article  Google Scholar 

  11. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, Adv. Phys. 45, 349 (1996). https://doi.org/10.1080/00018739600101517

    Article  ADS  Google Scholar 

  12. M. Goulkov, M. Imlau, and Th. Woike, Phys. Rev. B 77, 235110 (2008). https://doi.org/10.1103/PhysRevB.77.235110

    Article  ADS  Google Scholar 

  13. M. N. Palatnikov, N. V. Sidorov, I. V. Biryukova, O. B. Shcherbina, and V. T. Kalinnikov, Perspekt. Mater., No. 2, 93 (2011).

  14. M. N. Palatnikov, N. V. Sidorov, O. V. Makarova, and I. V. Biryukova, Fundamental Aspects of Technology of Highly Doped Lithium Niobate Crystals (Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, Apatity, 2017).

    Google Scholar 

  15. A. V. Syuy, N. V. Sidorov, A. Y. Gaponov, M. N. Palatnikov, and V. G. Efremenko, Optik 124, 5259 (2013). https://doi.org/10.1016/j.ijleo.2013.03.082

    Article  ADS  Google Scholar 

  16. A. V. Syui, N. V. Sidorov, M. N. Palatnikov, D. S. Shtarev, E. A. Antonycheva, A. Yu. Gaponov, and K. A. Chekhonin, J. Opt. Technol. 82, 319 (2015).

    Article  Google Scholar 

  17. G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Nonlinear Optical Crystals. Properties and Application in Quantum Electronics (Radio i Svyaz’, Moscow, 1991).

    Google Scholar 

  18. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons (Nauka, Moscow, 2003).

    Google Scholar 

  19. M. I. Sallum, Candidate’s Dissertation in Chemistry (St. Petersburg State Univ., St. Petersburg, 2009).

  20. H. H. Nahm and C. H. Park, Phys. Rev. B 78, 184108 (2008). https://doi.org/10.1103/PhysRevB.78.184108

    Article  ADS  Google Scholar 

  21. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, and S. Kimura, J. Solid State Chem. 101, 340 (1992). https://doi.org/10.1016/0022-4596(92)90189-3

    Article  ADS  Google Scholar 

  22. J. Blümel, E. Born, and T. Metzger, J. Phys. Chem. Solids 55, 589 (1994). https://doi.org/10.1016/0022-3697(94)90057-4

    Article  ADS  Google Scholar 

  23. T. Volk and M. Wöhlecke, Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008).

    Google Scholar 

  24. A. A. Blistanov, V. M. Lyubchenko, and A. N. Goryunova, Crystallogr. Rep. 43, 78 (1998).

    ADS  Google Scholar 

  25. M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).

    Google Scholar 

  26. V. V. Obukhovskii, Doctoral Dissertation in Mathematics and Physics (Taras Shevchenko National Univ., Kiev, 1989).

  27. I. Sh. Akhmadullin, V. A. Golenishchev-Kutuzov, S. A. Migachev, and S. P. Mironov, Phys. Solid State 40, 1190 (1998). https://doi.org/10.1134/1.1130517

    Article  ADS  Google Scholar 

  28. M. D. Fontana and P. Bourson, Appl. Phys. Rev. 2, 040602 (2015). https://doi.org/10.1063/1.4934203

    Article  ADS  Google Scholar 

  29. K. Polgar, A. Peter, L. Kovacs, G. Corradi, and Zs. Szaller, J. Cryst. Growth 177, 211 (1997). https://doi.org/10.1016/S0022-0248(96)01098-6

    Article  ADS  Google Scholar 

  30. Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, J. Phys.: Condens. Matter 11, 2139 (1999).

    ADS  Google Scholar 

  31. Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, Infrared Phys. Technol. 45, 281 (2004). https://doi.org/10.1016/j.infrared.2003.12.001

    Article  ADS  Google Scholar 

  32. S. Klauer, M. Wöhlecke, and S. Kapphan, Phys. Rev. B 45, 2786 (1992). https://doi.org/10.1103/PhysRevB.45.2786

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, scientific topic no. 0226-2019-0038 (registration no. АААА-А18-118022190125-2) and by the Russian Foundation for Basic Research, grant no. 19-33-90025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Teplyakova.

Ethics declarations

The author claims that there is no conflict of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Teplyakova, N.A., Titov, R.A. et al. Photovoltaic Fields and the Secondary Structure of Nominally Pure Lithium Niobate Crystals Grown from a Boron-Doped Furnace Charge. Tech. Phys. 65, 627–634 (2020). https://doi.org/10.1134/S1063784220040192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220040192

Navigation