Skip to main content
Log in

Atomic Disordering and BCC → FCC Transformation in the Heusler Compound Ni54Mn20Fe1Ga25 Subject to High-Pressure Torsional Megaplastic Deformation

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The Heusler compound with the L21 Ni54Mn20Fe1Ga25 structure subject to high-pressure torsional megaplastic deformation was first systematically studied by in situ methods of X-ray phase analysis and transmission and scanning electron microscopy. It was established that the torsional shear deformation at room temperature reduces the polycrystalline structure of the compound to a nanocrystalline and partially amorphous state. It was revealed that, as the pressure increases from 3 to 5 GPa and the degree of deformation increases from 2 to 5 revolutions, total atomic disordering and sequential structural-phase transformation according to the scheme B2(bcc) → A2(bcc) → A1(fcc) occur. It is shown that annealing at a temperature of 570 K and below causes devitrification of the amorphous phase and annealing at a temperature of 620 K and above causes the restoration of the L21 structure. The dimensional effect of suppressing the thermoelastic martensitic transformation is revealed in the nanostructured austenitic L21 alloy with grains smaller than 80 nm when cooled to 120 K. The capability of the thermoelastic martensitic transformation and of the shape memory is restored in a submicrocrystalline ultrafine-grained alloy after its recrystallization annealing at temperatures above 600 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Shape Memory Alloys, Ed. by H. Funakubo (Gordon and Breach, 1987).

    Google Scholar 

  2. Shape Memory Materials, Ed. by V. A. Likhachev (Inst. Khim. S.-Peterb. Gos. Univ., St. Petersburg, 1997–1998).

  3. V. G. Pushin, Phys. Met. Metallogr. 90, S68 (2000).

    Google Scholar 

  4. A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, Phys.-Usp. 46, 559 (2003).

    Article  Google Scholar 

  5. R. Cesare, J. Pons, R. Santamarta, C. Segui, and V. A. Chernenko, Arch. Metall. Mater 49, 779 (2004).

    Google Scholar 

  6. V. Brailovski, I. Yu. Khmelevskaya, S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and R. Z. Valiev, Phys. Met. Metallogr. 97, S3 (2004).

    Google Scholar 

  7. S. D. Prokoshkin, V. G. Pushin, E. P. Ryklina, and I. Yu. Khmelevskaya, Phys. Met. Metallogr. 97, S56 (2004).

    Google Scholar 

  8. J. Wilson and M. Weselowsky, Earthquake Spectra 21, 569 (2005).

    Article  Google Scholar 

  9. T. Yoneyama and S. Miyazaki, Shape Memory Alloys for Medical Applications (Woodhead, Cambridge, 2009).

    Book  Google Scholar 

  10. J. Dong, C. Cai, and A. O’Keil, J. Bridge Eng. 16, 305 (2011). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000145

    Article  Google Scholar 

  11. V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, Ann. Chim. Sci. Mater. 27 (3), 77 (2002).

    Article  Google Scholar 

  12. V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, N. I. Kourov, N. N. Kuranova, E. A. Prokofiev, and L. I. Yurchenko, Phys. Met. Metallogr. 94, S54 (2002).

    Google Scholar 

  13. R. Z. Valiev, V. G. Pushin, D. V. Gunderov, and A. G. Popov, Dokl. Phys. 49, 519 (2004).

    Article  ADS  Google Scholar 

  14. S. D. Prokoshkin, I. Yu. Khmelevskaya, S. V. Dobatkin, I. B. Trubitsyna, E. V. Tat’yanin, V. V. Stolyarov, and E. A. Prokof’ev, Phys. Met. Metallogr. 97, 619 (2004).

    Google Scholar 

  15. V. G. Pushin, R. Z. Valiev, Y. T. Zhu, D. V. Gunderov, A. V. Korolev, N. I. Kourov, T. E. Kuntsevich, E. Z. Valiev, and L. I. Yurchenko, Mater. Trans. 47, 546 (2006). https://doi.org/10.2320/matertrans.47.546

    Article  Google Scholar 

  16. K. Tsuchiya, Y. Hada, T. Koyano, K. Nakajima, M. Ohnuma, T. Koike, Y. Todaka, and M. Umemoto, Scr. Mater. 60, 749 (2009). https://doi.org/10.1016/j.scriptamat.2008.12.058

    Article  Google Scholar 

  17. K. C. Atli, I. Karaman, R. D. Noebe, A. Garg, Y. I. Chumlyakov, and I. V. Kireeva, Acta Mater. 59, 4747 (2011). https://doi.org/10.3390/ma12050798

    Article  Google Scholar 

  18. Y. Zhang, S. Jiang, L. Hu, and Y. Liang, Mater. Sci. Eng. A 559, 607 (2013). https://doi.org/10.1016/j.msea.2012.08.149

    Article  Google Scholar 

  19. S. Prokoshkin, V. Brailovski, A. Korotitskiy, S. Dubinskiy, M. Filonov, and M. Petrzhik, J. Alloys Compd. 577, S418 (2013). https://doi.org/10.1016/j.jallcom.2011.12.153

    Article  Google Scholar 

  20. S. Prokoshkin, S. Dubinskiy, V. Brailovski, A. Korotitskiy, A. Konopatsky, V. Sheremetyev, and E. Blinova, Mater. Lett. 192, 111 (2017). https://doi.org/10.1016/j.matlet.2016.12.046

    Article  Google Scholar 

  21. S. Tulic, M. Kerber, T. Waitz, and M. Matsuda, Funct. Mater. Lett. 10, 1740012 (2017).

    Article  ADS  Google Scholar 

  22. S. Prokoshkin, S. Dubinskiy, A. Korotitskiy, A. Ko-nopatsky, V. Sheremetyev, I. Shchetinin, A. Glezer, and V. Brailovski, J. Alloys Compd. 779, 667 (2019). https://doi.org/10.1016/j.jallcom.2018.11.180

    Article  Google Scholar 

  23. R. V. Sundeev, A. V. Shalimova, A. M. Glezer, E. A. Pechina, M. V. Gorshenkov, and G. I. Nosova, Mater. Sci. Eng. A 679, 1 (2017). https://doi.org/10.1016/j.msea.2016.10.028

    Article  Google Scholar 

  24. N. I. Kourov, V. G. Pushin, V. A. Kazantsev, E. B. Marchenkova, and A. N. Uksusnikov, Phys. Met. Metallogr. 103, 270 (2007).

    Article  ADS  Google Scholar 

  25. N. I. Kourov, V. G. Pushin, A. V. Korolev, V. V. Marchenkov, E. B. Marchenkova, V. A. Kazantsev, and H. W. Weber, Phys. Solid State 53, 91 (2011).

    Article  ADS  Google Scholar 

  26. I. I. Musabirov, I. M. Safarov, R. R. Mulyukov, I. Z. Sharipov, and V. V. Koledov, Lett. Mater., No. 4, 265 (2014).

  27. E. B. Marchenkova, V. G. Pushin, V. A. Kazantsev, A. V. Korolev, N. I. Kourov, and A. V. Pushin, Phys. Met. Metallogr. 119, 936 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme “Structure” no. AAAA-A18-118020190116-6) and of the Joint Laboratory of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences and of the Yeltsin Ural Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pushin.

Ethics declarations

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushin, V.G., Kuranova, N.N., Marchenkova, E.B. et al. Atomic Disordering and BCC → FCC Transformation in the Heusler Compound Ni54Mn20Fe1Ga25 Subject to High-Pressure Torsional Megaplastic Deformation. Tech. Phys. 65, 602–611 (2020). https://doi.org/10.1134/S1063784220040179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220040179

Navigation