Skip to main content
Log in

Functional Fatigue of Ni–Mn–Ga and Ni–Ti Alloys with the Shape Memory Effect in Thermocycling Conditions under a Constant Stress

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have performed comparative analysis of functional properties and functional fatigue of alloys of the Ni–Mn–Ga system in the initial molded state and the Ni–Ti system in the initial hot-forged state without thermal treatment. It is shown that the Ni2MnGa alloy in the molded state is preferable for low-loaded actuating elements (up to 100 MPa) and low recoverable strains (up to 1.5%) in the temperature range from –85 to –75°C; the Ni–Ti system alloy in the hot-forged state should be used for high-loaded actuating elements (up to 500 MPa) and high recoverable strains (up to 8.5%) in the temperature range from –40 to 40°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, Mater. Des. 56, 1078 (2014).

    Article  Google Scholar 

  2. J. Leng, X. Yan, X. Zhang, M. Qi, Z. Liu, and D. Huang, Smart Mater. Struct. 26, 105020 (2017).

    Article  ADS  Google Scholar 

  3. R. W. Wheeler and D. C. Lagoudas, Proc. SPIE 10172, 101720E-2 (2017).

    Article  Google Scholar 

  4. G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, Mater. Sci. Eng. A 378, 24 (2004).

    Article  Google Scholar 

  5. W. Abuzaida and H. Sehitoglu, Mater. Sci. Eng. A 696, 482 (2017).

    Article  Google Scholar 

  6. O. Benafan, S. A. Padula II, H. D. Skorpenske, K. An, and R. Vaidyanathan, Rev. Sci. Instrum. 85, 103901 (2014).

    Article  ADS  Google Scholar 

  7. J. S. Owusu-Danquah and A. F. Saleeb, Eur. J. Mech. A 64, 143 (2017).

    Article  Google Scholar 

  8. H. Yin, Y. He, Z. Moumni, and Q. Sun, Int. J. Fatigue 88, 166 (2016).

    Article  Google Scholar 

  9. M. M. Sherif and O. E. Ozbulut, Smart Mater. Struct. 27, 015007 (2018).

    Article  ADS  Google Scholar 

  10. M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-Micklich, R. Steegmuller, M. Wohlschlogel, H. Mughrabi, and G. Eggeler, Acta Mater. 61, 3667 (2013).

    Article  Google Scholar 

  11. G. Kang and D. Song, Theor. Appl. Mech. Lett. 5, 245 (2015).

    Article  Google Scholar 

  12. H. Yin, Y. He, Z. Moumni, and Q. Sun, Int. J. Fatigue 88, 166 (2016).

    Article  Google Scholar 

  13. R. Casati, F. Saghafi, C. A. Biffi, M. Vedani, and A. Tuissi, J. Mater. Eng. Perform. 26, 4964 (2017).

    Article  Google Scholar 

  14. T. Bartel, M. Osman, and A. Menzel, Meccanica 52, 973 (2017).

    Article  MathSciNet  Google Scholar 

  15. H. Yan, Y. Marcoux, and Y. Chen, Int. J. Fatigue 105, 1 (2017).

    Article  Google Scholar 

  16. V. A. Barvinok, V. I. Bogdanovich, O. V. Lomovskoi, M. A. Vishnyakov, and A. A. Groshev, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk 13 (4–2), 301 (2011).

  17. S. J. Furst and S. Seelecke, Smart Mater. Struct. 23, 035008 (2014).

    Article  ADS  Google Scholar 

  18. Yu. N. V’yunenko, Vestn. Tambov. Univ. Ser. Estestv. Tekh. Nauki 21, 791 (2016).

    Google Scholar 

  19. S. M. Mirvakili and I. W. Hunter, ACS Appl. Mater. Interfaces 9, 16321 (2017).

    Article  Google Scholar 

  20. I. E. Dikshtein, D. I. Ermakov, V. V. Koledov, L. V. Koledov, T. Takagi, A. A. Tulaikova, and V. G. Shavrov, JETP Lett. 72, 373 (2000).

    Article  ADS  Google Scholar 

  21. A. A. Cherechukin, I. E. Dikshtein, D. I. Ermakov, A. V. Glebov, V. V. Koledov, D. A. Kosolapov, and T. Takagi, Phys. Lett. A 291, 175 (2001).

    Article  ADS  Google Scholar 

  22. I. I. Musabirov, I. M. Safarov, R. M. Galeev, D. D. Afonichev, V. V. Koledov, R. R. Rudskoi, and A. I. Mulyukov, Fiz. Mekh. Mater. 33, 124 (2017).

    Google Scholar 

  23. I. I. Musabirov, I. M. Safarov, R. M. Galeyev, R. A. Gaisin, V. V. Koledov, and R. R. Mulyukov, Phys. Solid State 60, 1061 (2018).

    Article  ADS  Google Scholar 

  24. V. S. Kalashnikov, V. A. Andreev, V. V. Koledov, D.  V.  Gunderov, A. V. Petrov, V. G. Shavrov, D. V. Kuchin, and R. M. Gizatullin, Met. Sci. Heat Treat. 61, 504 (2019).

    Article  ADS  Google Scholar 

  25. V. S. Kalashnikov, V. V. Koledov, D. S. Kuchin, A. V. Petrov, and V. G. Shavrov, Instrum. Exp. Tech. 61, 306 (2018).

    Article  Google Scholar 

Download references

Funding

This study was performed under State assignment for the Institute of Radio Engineering and the Russian Foundation for Basic Research (project no. 17-07-01524). Molding and analysis of physical properties of the Geissler alloy was performed under State assignment for the Institute of Metals Superplasticity Problems, Russian Academy of Science (I.I. Musabirov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Kalashnikov.

Ethics declarations

The authors claim that there is no conflict of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalashnikov, V.S., Musabirov, I.I., Koledov, V.V. et al. Functional Fatigue of Ni–Mn–Ga and Ni–Ti Alloys with the Shape Memory Effect in Thermocycling Conditions under a Constant Stress. Tech. Phys. 65, 578–583 (2020). https://doi.org/10.1134/S1063784220040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220040106

Navigation