Skip to main content
Log in

Influence of Grain Boundaries on the Electrical Conductivity of Copper Alloys

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The experimentally found insensitivity of the resistivity of Cu–Cr and Cu–Cr–Zr alloys to structural modifications in alloy specimens subjected to severe plastic deformation has been studied by analytical modeling methods. Using Cu–1.8 wt% Cr–0.8 wt% Zr alloy as an example, it has been shown that an increased contribution of grain boundaries and secondary phase fine particles precipitated after equal channel angular pressing make an increased contribution to resistivity but this increase is compensated for by roughly the same decrease in the contribution from alloying atoms dissolved in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. R. K. Islamgaliev, A. Akhmadeev, R. Mulyukov, and R. Z. Valiev, Phys. Status Solidi A 118, K27 (1990).

    Article  ADS  Google Scholar 

  2. R. K. Islamgaliev, R. Ya. Murtazin, L. A. Syutina, and R. Z. Valiev, Phys. Status Solidi A 129, 231 (1992).

    Article  ADS  Google Scholar 

  3. X. H. An, Q. Y. Lin, S. D. Wu, Z. F. Zhang, R. B. Figueiredo, N. Gao, and T. G. Langdon, Scr. Mater. 64, 954 (2011).

    Article  Google Scholar 

  4. E. A. Sarkeeva, V. D. Sitdikov, G. I. Raab, W. Wei, and I. V. Alexandrov, IOP Conf. Ser.: Mater. Sci. Eng. 447, 012065 (2018). https://doi.org/10.1088/1757-899X/447/1/012065

  5. W. A. Harrison, J. Phys. Chem. Solids 5, 44 (1958).

    Article  ADS  Google Scholar 

  6. F. J. Blatt, Physics of Electronic Conduction in Solids (McGraw-Hill, New York, 1968).

    Google Scholar 

  7. R. K. Islamgaliev, K. M. Nesterov, J. Bourgon, Y. Champion, and R. Z. Valiev, J. Appl. Phys. 115, 194301 (2014). https://doi.org/10.1063/1.4874655

    Article  ADS  Google Scholar 

  8. K. X. Wei, W. Wei, F. Wang, Q. B. Du, I. V. Alexandrov, and J. Hu, Mater. Sci. Eng. A 528, 1478 (2011).

    Article  Google Scholar 

  9. A. A. Abrikosov, Foundations of the Theory of Metals (Nauka, Moscow, 1987).

    Google Scholar 

  10. R. G. Chembarisova, IOP Conf. Ser.: Mater. Sci. Eng. 447, 012085 (2018). https://doi.org/10.1088/1757-899X/447/1/012085

  11. V. T. Shmatov, Fiz. Met. Metalloved. 40, 910 (1975).

    Google Scholar 

  12. H. Glieter, Scr. Metall. 11, 305 (1977).

    Article  Google Scholar 

  13. A. S. Karolik, Fiz. Met. Metalloved. 75, 34 (1993).

    Google Scholar 

  14. A. S. Karolik and A. A. Lukhvich, J. Phys.: Condens. Matter 6, 873 (1994).

    ADS  Google Scholar 

  15. S. C. Hunter and F. R. N. Nabarro, Proc. R. Soc. London. Ser. A 220, 542 (1953). https://doi.org/10.1098/rspa.1953.0205

    Article  ADS  Google Scholar 

  16. V. I. Vladimirov and A. N. Orlov, Fiz. Tverd. Tela 11, 370 (1969).

    Google Scholar 

  17. V. I. Vladimirov and A. N. Orlov, Strength Mater. 3, 154 (1971).

    Article  Google Scholar 

  18. A. A. Lukhvich and A. S. Karolik, Fiz. Met. Metalloved. 61, 395 (1986).

    Google Scholar 

  19. G.-J. Wang and V. Vutec, Acta Metall. 34, 951 (1986).

    Article  Google Scholar 

  20. K. Pȩkala and M. Pȩkala, Nanostruct. Mater 6, 819 (1995).

    Article  Google Scholar 

  21. R. G. Chembarisova, I. V. Aleksandrov, and A. M. Yamileva, Tech. Phys. 64, 162 (2019). https://doi.org/10.1134/S106378421902004X

    Article  Google Scholar 

  22. O. E. Osintsev and V. N. Fedorov, Copper and Copper Alloys. Russian and Foreign Grades (Mashinostroenie, Moscow, 2004).

    Google Scholar 

  23. D. V. Shan’gina, Candidate’s Dissertation in Engineering (Inst. of Metallurgy and Materials Science, Russ. Acad. Sci., Moscow, 2018).

  24. A. K. Nikolaev, A. I. Novikov, and V. M. Rozenberg, Chromium Bronzes (Metallurgiya, Moscow, 1983).

    Google Scholar 

  25. State Diagrams of Binary Metallic Systems. Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997), Vol. 2.

    Google Scholar 

  26. M. I. Kuznetsov, Basic Electrical Engineering (Vysshaya Shkola, Moscow, 1964).

    Google Scholar 

  27. J. M. Ziman, Electrons and Phonons (Clarendon, 1960).

    MATH  Google Scholar 

  28. M. J. Zehetbauer, H. P. Stüwe, A. Vorhauer, E. Schafler, and J. Kohout, Adv. Eng. Mater. 5, 330 (2003).

    Article  Google Scholar 

  29. A. Matthiessen and C. Vogt, Philos. Trans. R. Soc. London 154, 167 (1864).

    ADS  Google Scholar 

  30. Sh. Zhang, R. Li, H. Kang, Z. Chen, W. Wang, C. Zou, T. Li, and T. Wang, Mater. Sci. Eng. A 680, 108 (2017).

    Article  Google Scholar 

  31. Y. H. Zhao, X. Z. Liao, Z. Jin, R. Z. Valiev, and Y. T. Zhu, Acta Mater. 52, 4589 (2004). https://doi.org/10.1016/j.actamat.2004.06.017

    Article  Google Scholar 

  32. L. I. Zaynullina, V. D. Sitdikov, I. V. Alexandrov, and W. Wei, IOP Conf. Ser.: Mater. Sci. Eng. 447, 012041 (2018). https://doi.org/10.1088/1757-899X/447/1/012041

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Chembarisova.

Ethics declarations

The author claims that conflict of interest is absent.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chembarisova, R.G. Influence of Grain Boundaries on the Electrical Conductivity of Copper Alloys. Tech. Phys. 65, 593–601 (2020). https://doi.org/10.1134/S1063784220040040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220040040

Navigation