Skip to main content
Log in

Structural Modification and Erosion of Plasma-Irradiated Tungsten and Molybdenum Surfaces

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Data for the structural modification and erosion of plasma-irradiated tungsten and molybdenum surfaces are reported. It has been found that the irradiated specimen surface shows a relief due to nonuniform etching. It has been shown using metallographic examination that the relief of a tungsten surface irradiated at 1000 and 1500°C is less pronounced than after irradiation at 700°C. The surface roughness of tungsten has been found to be the highest after irradiation at 1500°C, which is related to the formation of fine cracks. It should be noted that after irradiation by plasma flows simulating steady-state conditions, considerable erosion on irradiated tungsten and molybdenum surfaces is observed only at high temperatures. Also, it has been established that the crack size grows when the ion energy rises from 1.5 to 2.0 keV. It has been shown that tungsten irradiation by a stationary plasma forms 100- to 500-nm etch pits inside grains, and when tungsten is irradiated by an accelerating voltage of 1.6 keV, a large amount of fine pores (from 0.2 to 1.0 μm across) appear as a result of surface etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. Kurnaev, A. Kolodeshnikov, T. Tulenbergenov, and I. Sokolov, J. Nucl. Mater. 463, 228 (2015).

    Article  ADS  Google Scholar 

  2. J. Roth, E. Tsirone, A. Loarte, Th. Loarer, G. Counsell, R. Neu, V. Philipps, S. Brezinsek, M. Lehnen, P.  Coad, Ch. Grisolia, K. Schmid, K. Krieger, A. Kallenbach, B. Lipschultz, et al., J. Nucl. Mater. 390391, 1 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.037

  3. A. K. Klepikov, I. L. Tazhibaeva, V. P. Shestakov, O. G. Romanenko, Y. V. Chikhray, Yu. S. Cherepnin, and L. N. Tikhomirov, J. Nucl. Mater. 233237, 837 (1996). https://doi.org/10.1016/S0022-3115(96)00039-6

  4. V. P. Budaev, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 38 (4), 5 (2015).

    Google Scholar 

  5. ITER Joint Central Team, Report No. G AO FDR 4 01-07-21 R0.4 (Garching, 2001).

  6. V. Philipps, J. Roth, and A. Loarte, Plasma Phys. Controlled Fusion 45, 17 (2003).

    Article  ADS  Google Scholar 

  7. Test Stand to Supplement the Research at the KTM Tokamak: Final Report 85-3-021-129. Part 1 (Mosk. Inzh.-Fiz. inst., Moscow, 2005).

  8. I. A. Sokolov, M. K. Skakov, V. A. Zuev, D. A. Ganovichev, T. R. Tulenbergenov, and A. Zh. Miniyazov, Tech. Phys. 63, 506 (2018).

    Article  Google Scholar 

  9. A. D. Sadykov, D. Yu. Suchugov, G. V. Shapovalov, B. Zh. Chektybaev, M. K. Skakov, and N. A. Gasilov, Nucl. Fusion 55, 043017 (2015). https://doi.org/10.1088/0029-5515/55/4/043017

    Article  ADS  Google Scholar 

  10. S. A. Saltykov, Stereometric Metallography (Metallurgiya, Moscow, 1976).

    Google Scholar 

  11. K. W. Andrews, D. J. Dyson, and S. R. Keown, Interpretation of Electron Diffraction Patterns (Springer, Boston, 1967).

    Book  Google Scholar 

  12. V. I. Barsukov, Plasma-Emission and Atomic-Absorption Analysis Methods and Instrumental Techniques of Enhancing Their Sensitivity (Mash-1, Moscow, 2004).

  13. B. K. Rahadilov, M. K. Skakov, and T. R. Tulenbergenov, Key Eng. Mater. 736, 46 (2017).

    Article  Google Scholar 

  14. B. K. Rakhadilov and M. K. Skakov, Proc. XI Int. Conf. “Nuclear and Radiation Physics,” Almaty, Kazakhstan, 2017, p. 241.

  15. L. B. Begrambekov, Ion and Plasma Modification of Surfaces of Solids (Mosk. Inzh.-Fiz. Inst., Moscow, 2001).

    Google Scholar 

  16. B. Rakhadilov, M. Skakov, A. Miniyazov, and A. Kenesbekov, Proc. 27th Int. Conf. on Metallurgy and Materials, Brno, Czech Republic,2018, p. 1216.

Download references

Funding

This study was supported by a grant from the Science Committee at the Ministry of Education and Science of the Republic of Kazakhstan as part of the project Experimental Simulation of Interaction between Plasma and Candidate Materials for Thermonuclear Reactors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zh. Miniyazov.

Ethics declarations

The authors claim that they do not have any conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhadilov, B.K., Miniyazov, A.Z., Skakov, M.K. et al. Structural Modification and Erosion of Plasma-Irradiated Tungsten and Molybdenum Surfaces. Tech. Phys. 65, 382–391 (2020). https://doi.org/10.1134/S1063784220030202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220030202

Navigation