Skip to main content
Log in

Biplanar Epitaxial AlN/SiC/(n, p)SiC Structures for High-Temperature Functional Electronic Devices

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We investigate the possibility of integration of epitaxial SiC and AlN technologies using opposite faces of the common SiC substrate (AlN epitaxy is performed at the final stage), preserving the initial quality of the preliminarily prepared SiC layers. In particular, we study the influence of AlN heteroepitaxy and accompanying elastic stresses on the redistribution of a doping impurity in SiC layers, as well as the transformation of the local values of the breakdown voltage of barrier diodes, which is associated with this process. As the diagnostic procedure in studying possible negative consequences of durable growth (about 3 h, 60 μm), we have measured reverse branches of the current–voltage characteristics of surface-barrier diode matrices of the Au–SiC type, which have intentionally been formed before and immediately after AlN epitaxy and then removed after the appropriate measuring procedure. Statistical processing of the breakdown voltages (including the calculation of histograms) shows that the variation of mean values and dispersion for the n- as well as p-layers is insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. D. Bukhovski, V. V. Kaminski, M. S. Shur, Q. C. Chen, and M. A. Khan, Appl. Phys. Lett. 69, 3254 (1996).

    Article  ADS  Google Scholar 

  2. D. A. Parks, B. R. Tittmann, and M. M. Kropf, AIP Conf. Proc. 1211, 1029 (2010).

    Article  ADS  Google Scholar 

  3. T. Kim, J. Kim, R. Dalmau, R. Schlesser, E. Preble, and X. Jiang, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 62, 1880 (2015).

    Article  Google Scholar 

  4. M. A. Fraga, H. Furlan, R. S. Pessoa, and M. Massai, Microsyst. Technol. 20, 9 (2014).

    Article  Google Scholar 

  5. S. A. Kukushkin, A. V. Osipov, O. N. Sergeeva, D.  A.  Kisele, A. A. Bogomolov, A. V. Solnyshkin, E. Yu. Kaptelov, S. V. Senkevich, and I. P. Pronin, Phys. Solid State 58, 967 (2016).

    Article  ADS  Google Scholar 

  6. G. A. Gavrilov, A. F. Kapralov, K. L. Muratikov, E. A. Panyutin, A. V. Sotnikov, G. Yu. Sotnikova, and Sh. Sh. Sharofidinov, Tech. Phys. Lett. 44, 709 (2018).

    Article  ADS  Google Scholar 

  7. S. Kargarrazi, L. Lanni, and C. M. Zetterling, Mater. Sci. Forum 821, 897 (2015).

    Article  Google Scholar 

  8. S. Kargarrazi, L. Lanni, and C. M. Zetterling, Solid-State Electron. 116, 33 (2016).

    Article  ADS  Google Scholar 

  9. S. Kargarrazi, H. Elahipanah, S. Rodriguez, and C. M. Zetterling, IEEE Electron Device Lett. 39, 548 (2018).

    Article  ADS  Google Scholar 

  10. D. J. Spry, P. J. Neudeck, D. Lukco, L. Chen, M. J. Krasowski, N. F. Prokop, K. W. Chang, and G. M. Beheim, Mater. Sci. Forum 924, 949 (2018).

    Article  Google Scholar 

  11. P. G. Neudeck, D. J. Spry, L. Chen, N. F. Prokop, and M. J. Krasowski, IEEE Electron Device Lett. 38, 1082 (2017).

    Article  ADS  Google Scholar 

  12. S. Figge, H. Krönce, D. Hommel, and E. M. Epelbaum, Appl. Phys. Lett. 94, 101915 (2009).

    Article  ADS  Google Scholar 

  13. H. Ivanaga, A. Kunishige, and S. Takeuchi, J. Mater. Sci. 35, 2451 (2000).

    Article  ADS  Google Scholar 

  14. Z. Li and R. C. Bradt, J. Appl. Phys. 60, 612 (1986).

    Article  ADS  Google Scholar 

  15. M. Stockmeier et al., Mater. Sci. Forum 600603, 517 (2009).

  16. R. Rurali, P. Godignon, and J. Rebollo, Appl. Phys. Lett. 81, 2989 (2002).

    Article  ADS  Google Scholar 

  17. M. Bockstedte, A. Mattausch, and O. Pankratov, Phys. Rev. B 70, 115203 (2004).

    Article  ADS  Google Scholar 

  18. A. M. Strel’chuk, V. V. Zelenin, A. N. Kuznetsov, J. Tringe, A. V. Davydov, and A. A. Lebedev, Mater. Sci. Forum 858, 749 (2016).

    Article  Google Scholar 

  19. A. A. Lebedev, M. V. Zamoryanskaya, S. Yu. Davydov, D. A. Kirilenko, S. P. Lebedev, L. M. Sorokin, D. B. Shustov, and M. P. Sheglov, J. Cryst. Growth 396, 100 (2014).

    Article  ADS  Google Scholar 

  20. S. S. Sharofidinov, A. A. Golovatenko, I. P. Nikitina, N. V. Seredova, M. G. Mynbaeva, V. E. Bougrov, M. A. Odnobludov, S. I. Stepanov, and V. I. Nikolaev, Mater. Phys. Mech. 22, 53 (2015).

    Google Scholar 

  21. S. M. Sze, Physics of Semiconductor Devices (Wiley, 2006).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Panyutin.

Ethics declarations

The authors claim that there are no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panyutin, E.A., Sharofidinov, S.S., Orlova, T.A. et al. Biplanar Epitaxial AlN/SiC/(n, p)SiC Structures for High-Temperature Functional Electronic Devices. Tech. Phys. 65, 428–433 (2020). https://doi.org/10.1134/S1063784220030184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220030184

Navigation