Skip to main content
Log in

Destruction Features of Impactors Made of a Porous Alloy Based on Tungsten with Reinforcing Filler When Interacting with Armored Obstacles

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In this study, we perform calculations and experimental studies of the destruction of composite impactors from a porous tungsten–nickel–iron–cobalt alloy with 10 wt % tungsten titanium carbide at high-speed impact with steel barriers. In ballistic tests over a wide range of velocities, there is a significant excess of the penetration depth of these impactors into steel barriers compared to the mass-dimensional analog of a tungsten–nickel–iron alloy with 90% tungsten content. Based on the analysis of crater morphology and the structure of impactor fragments after introduction into the obstacle, we assume that the impactor is “self-sharpened” by localizing plastic deformation, which reduces the effective interaction area and increases the penetration depth. To describe the destruction, we modified the mathematical model of a porous ideal elastic-plastic body with a complex structure with the possibility of considering the adiabatic shear mechanism during interaction between the impactor and the obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. B. Chernyak and K. B. Povarova, Tungsten in Munitions, Ed. by I. N. Torgun (FGUP TsNIIKhM, Moscow, 2014).

  2. A. V. Gerasimov, V. P. Glazyrin, S. A. Zelepugin, A. A. Konyaev, Yu. N. Orlov, S. V. Pashkov, V. F. Tolkachev, and Yu. F. Khristenko, High-Velocity Impact. Simulation and Experiment, Ed. by A. V. Gerasimov (NTL, Tomsk, 2016).

    Google Scholar 

  3. K. B. Povarova, M. I. Alymov, A. A. Drozdov, E.  V.  Evstratov, O. S. Gavrilin, A. I. Kachnov, and A. E. Salko, Russ. Metall. (Engl. Transl.) 2007, 499 (2007).

  4. K. B. Povarova, M. I. Alymov, and A. A. Drozdov, Vopr. Materialoved., No. 2, 94 (2008).

  5. A. M. Bragov, V. N. Chuvildeev, N. V. Melekhin, A. R. Filippov, A. Yu. Konstantinov, and N. V. Sakharov, Phys. Mesomech. 22, 307 (2019). https://doi.org/10.1134/S1029959919040064

    Article  Google Scholar 

  6. V. F. Tolkachev, S. A. Zelepugin, and V. S. Kozlov, Vestn. Tambov. Univ. Ser.: Estestv. Tekh. Nauki 21, 1354 (2016). https://doi.org/10.20310/1810-0198-2016-21-3-1354-1357

  7. A. N. Ishchenko, S. A. Afanas’eva, N. N. Belov, V. V. Burkin, K. S. Rogaev, A. Y. Sammel’, A. B. Skosyrskii, A. N. Tabachenko, and N. T. Yugov, Tech. Phys. Lett. 43, 796 (2017).

    Article  ADS  Google Scholar 

  8. A. N. Ishchenko, R. N. Akinshin, S. A. Afanas’eva, N. N. Belov, I. L. Borisenkov, V. V. Burkin, A. N. Tabachenko, M. V. Khabibullin, and N. T. Yugov, Russ. Phys. J. 61, 1054 (2018).

    Article  Google Scholar 

  9. V. A. Burakov, V. V. Burkin, A. N. Ishchenko, L.  V.  Korol’kov, E. Yu. Stepanov, A. V. Chupashev, S. V. Agafonov, and K. S. Rogaev, RF Patent No. 2591132 (2016).

  10. O. B. Naimark and M. A. Sokovikova, Vestn. Permsk. Gos. Tekh. Univ. Mat. Model. Sist. Protsessov, No. 3, 71 (1995).

    Google Scholar 

  11. S. N. Burakova and Yu. A. Gordopolov, Dokl. Akad. Nauk 417, 756 (2007).

    Google Scholar 

  12. N. N. Belov, V. N. Demidov, L. V. Efremova, A. V. Zhukov, A. P. Nikolaev, V. G. Simonenko, V. G. Trushkov, M. V. Khabibullin, I. E. Shipovskii, and V. B. Shutalev, Russ. Phys. J. 35, 690 (1992).

    Article  Google Scholar 

  13. V. A. Starenchenko, L. A. Valuiskaya, Ya. D. Fakhrutdinova, Yu. A. Solovjeva, N. N. Belov, Russ. Phys. J. 55, 211 (2012).

    Article  Google Scholar 

  14. Ya. D. Lipatnikova, N. N. Belov, N. T. Yugov, and V. A. Starenchenko, Russ. Phys. J. 61, 955 (2018).

    Article  Google Scholar 

  15. N. T. Yugov, N. N. Belov, and A. A. Yugov, RF Software Certificate No. 2010611042 (2010).

Download references

ACKNOWLEDGMENTS

In this study, we used the results obtained in the course of the implementation of project no. 8.2.09.2018, the Competitiveness Improvement Program of the National Research Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Afanas’eva.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishchenko, A.N., Afanas’eva, S.A., Belov, N.N. et al. Destruction Features of Impactors Made of a Porous Alloy Based on Tungsten with Reinforcing Filler When Interacting with Armored Obstacles. Tech. Phys. 65, 414–419 (2020). https://doi.org/10.1134/S106378422003010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422003010X

Navigation