Skip to main content
Log in

The Influence of Electric Fields on Self-Organization Processes in an Ultradispersed Solution of Multi-Walled Carbon Nanotubes

  • PHYSICS OF LOW-DIMENSIONAL STRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of the electric field on the ordering processes in sediments of an ultradispersed solution of functionalized carbon nanotubes is investigated. The features and regularities of self-assembling and/or self-organization, leading to the formation of linear, fractal, and cluster substrates are examined via confocal (with video recording) and atomic force microscopy, scanning electron microscopy and transmission electron microscopy, as well as via IR Fourier spectroscopy, Raman spectroscopy and X-ray diffraction. It is established that dimensions of fractal structures decrease inversely to the electric field strength and their growth rate is a quadratic function of strength. Single-walled carbon nanotubes with metallic and semiconducting conductivities are detected and characterized with respect to chirality inside linear and cluster structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y. Che, H. Chen, H. Gui, J. Liu, B. Liu, and C. Zhou, Semicond. Sci. Technol. 29, 073001 (2014).

    Article  ADS  Google Scholar 

  2. Sh. Aikawa, S. Kim, Th. Thurakitseree, et al., Appl. Phys. Lett. 112, 013501 (2018).

    Article  ADS  Google Scholar 

  3. V. T. Le, C. L. Ngo, Q. T. Le, et al., Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 035017 (2013).

    ADS  Google Scholar 

  4. Yu. Birylin, D. Kurdybaylo, V. Shamanin, et al., Fullerenes, Nanotubes, Carbon Nanostruct. 16, 529 (2008).

    Google Scholar 

  5. L. Reinert, M. Zeiger, S. Suarez, et al., R. Soc. Chem. Adv. 5, 95149 (2015).

    Google Scholar 

  6. H. Hosseini and H. Mahdavi, Appl. Organomet. Chem. 32, e4294 (2018). https://doi.org/10.1002/aoc.4294

    Article  Google Scholar 

  7. A. I. Vorob’eva, Phys.-Usp. 53, 257 (2010).

    Article  Google Scholar 

  8. D. K. Singh, P. K. Iyer, and P. K. Giri, Diamond Relat. Mater. 19, 1281 (2010).

    Article  ADS  Google Scholar 

  9. J. H. Lehman, M. Terrones, El. Mansfield, et al., Carbon 49, 2581 (2011).

    Article  Google Scholar 

  10. J. Li, Q. Zhang, N. Peng, et al., Appl. Phys. Lett. 86, 153116 (2005).

    Article  ADS  Google Scholar 

  11. N. A. Davletkil’deev, D. V. Sokolov, V. V. Bolotov, and I. A. Lobov, Tech. Phys. Lett. 43, 205 (2017).

    Article  ADS  Google Scholar 

  12. A. Vul’, K. Reich, Ev. Eidelman, et al., Adv. Sci. Lett. 3, 110 (2010).

    Article  Google Scholar 

  13. I. Sameera, R. Bhatia, V. Prasad, et al., J. Appl. Phys. 111, 044307 (2012).

    Article  ADS  Google Scholar 

  14. S. Banerjee, B. E. White, L. Huang, et al., J. Vac. Sci. Technol. B 24, 3173 (2006).

    Article  Google Scholar 

  15. O. A. Ageev, Yu. F. Blinov, M. V. Il’ina, O. I. Il’in, V. A. Smirnov, and O. G. Tsukanova, Phys. Solid State 58, 309 (2016).

    Article  ADS  Google Scholar 

  16. M. V. Gorshkov, A. S. Moskalenko, V. S. Pavel’ev, et al., in Proc. III Int. Conf. and Youth School “Information Technology and Nanotechnology,” Samara,2017, p. 328.

  17. M. D. Bel’skii, G. S. Bocharov, A. V. Eletskii, and T. J. Sommerer, Tech. Phys. 55, 289 (2010).

    Article  Google Scholar 

  18. S. Fitnat, Ah. Naveed, H. Saqib, et al., Appl. Sci. 8, 395 (2018). https://doi.org/10.3390/app8030395

    Article  Google Scholar 

  19. D.-J. Yun, Y. J. Jeong, H. Ra, et al., Org. Electron. 52, 7 (2018).

    Article  Google Scholar 

  20. V. Saikiran, P. Bazylewski, I. Sameera, et al., Appl. Surf. Sci. 439, 823 (2018).

    Article  ADS  Google Scholar 

  21. Y. Y. Huang, Eu. M. Terentjev, et al., Polymers 4, 275 (2012).

    Article  Google Scholar 

  22. S. Sadia, Iq. Nadeem, and M. Asghari, J. Phys.: Conf. Ser. 439, 012024 (2013).

    Google Scholar 

  23. V. Datsyuk, M. Kalyva, K. Papagelis, et al., Carbon 46, 833 (2008).

    Article  Google Scholar 

  24. A. P. Kuz’menko, N. A. Chan, and V. V. Rodionov, Tech. Phys. 60, 903 (2015).

    Article  Google Scholar 

  25. A. P. Kuz’menko, P. N. Thet, M. T. Myo, et al., Izv. Yugo-Zapadn. Gos. Univ. Ser. Tekh. Tekhnol., No. 3(16), 39 (2015).

  26. L. V. Andreeva, A. V. Koshkin, P. V. Lebedev-Stepanov, et al., Colloids Surf., A 300, 300 (2007).

    Article  Google Scholar 

  27. V. L. Kuznetsov, S. N. Bokova-Sirosh, I. S. Moseenkov, et al., Phys. Status Solidi B 251, 2444 (2014).

    Article  ADS  Google Scholar 

  28. H. Telg, M. Fouquet, J. Maultzsch, et al., Phys. Status Solidi 245, 2189 (2008).

    Article  Google Scholar 

  29. C. Thomsen and S. Reich, in Light Scattering in Solid IX, Ed. by M. Cardona and R. Merlin (Springer, 2007), p. 115.

    Google Scholar 

  30. L.-Ch. Qin, X. Zhao, K. Hirahara, et al., Nature 408, 50 (2000).

    Article  ADS  Google Scholar 

  31. M. S. Dresselhaus, A. Jorio, M. Hofmann, et al., Nano Lett. 10, 751 (2010).

    Article  ADS  Google Scholar 

  32. R. Krupke, F. Hennrich, H. Lohneysen, et al., Science 301, 344 (2003).

    Article  ADS  Google Scholar 

  33. R. D. Rodriguez, T. Marius, H. Sascha, et al., Nano. Res. Lett. 7, 682 (2012).

    Article  Google Scholar 

  34. J. Li, Y. He, Y. Han, et al., Nano Lett. 12, 4095 (2012).

    Article  ADS  Google Scholar 

  35. Sh.-J. Ma and W.-L. Guo, Chin. Phys. Lett. 25, 270 (2008).

    Article  ADS  Google Scholar 

  36. A. P. Kuz’menko, P. N. Thet, A. E. Kuz’ko, et al., Izv. Vyssh. Uchebn. Zaved., Mater. Elektron. Tekh. 19, 269 (2016).

    Google Scholar 

  37. Q. Bao, H. Zhang, and Ch. Pan, Comput. Mater. Sci. 39, 616 (2007).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Sciences of the Russian Federation (project no. 16.2814.2017/PCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kuz’menko.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’menko, A.P., Naing, T.P., Kuz’ko, A.E. et al. The Influence of Electric Fields on Self-Organization Processes in an Ultradispersed Solution of Multi-Walled Carbon Nanotubes. Tech. Phys. 65, 254–263 (2020). https://doi.org/10.1134/S1063784220020127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220020127

Navigation