Skip to main content
Log in

Dielectric Losses in Hydrogen-Saturated VT1-0 Titanium Induced by Eddy Current Propagation

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Dielectric loss tangent tanδ in hydrogen-saturated VT1-0 titanium has been studied in the hydrogen concentration range 190–2000 ppm and eddy current frequency interval 200–1000 kHz. The frequency dependence of tanδ has two distinct peaks indicating that hydrogen is nonuniformly distributed along the depth of the titanium sample. It is supposed that this approach can be used to determine the hydrogen concentration in hydrogen-saturated VT1-0 metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Zhang, S. Chen, S. Yuan, D. Wang, P.-H. Hu, and Z.-M. Dang, Appl. Phys. Lett. 105, 052905 (2014).

    Article  ADS  Google Scholar 

  2. R. C. Pullar, S. J. Penn, X. Wang, I. M. Reaney, and N. McN. Alford, J. Eur. Ceram. Soc. 29, 419 (2009).

    Article  Google Scholar 

  3. V. M. Kalygina, A. N. Zarubin, V. A. Novikov, Yu.  S.  Petrova, M. S. Skakunov, O. P. Tolbanov, A. V. Tyazhev, and T. M. Yaskevich, Semiconductors 44, 1227 (2010).

    Article  ADS  Google Scholar 

  4. V. V. Larionov, S. Xu, and M. S. Syrtanov, AIP Conf. Proc. 1772, 040005 (2016). https://doi.org/10.1063/1.4964564

  5. S. Xu and V. V. Larionov, in Proc. XIV Int. Conf. “Prospects of Fundamental Sciences Development,” Tomsk,2017, Vol. 1, p. 336.

  6. E. A. Evard, I. E. Gabis, and A. P. Voyt, J. Alloys Compd. 404406, 335 (2005).

  7. A. V. Panin, Appl. Surf. Sci. 284, 750 (2013).

    Article  ADS  Google Scholar 

  8. A. V. Panin, V. E. Panin, Yu. I. Pochivalov, V. A. Klimenov, I. P. Chernov, R. Z. Valiev, M. S. Kazachenok, and A. A. Son, Fiz. Mezomekh. 5 (4), 73 (2002).

    Google Scholar 

  9. A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, J. Nanomater. 2014, 124814 (2014). https://doi.org/10.1155/2014/124814

  10. Y. Song, Y. Shen, P. Hu, Y. Lin, M. Li, and C. W. Nan, Appl. Phys. Lett. 101, 152904 (2012).

    Article  ADS  Google Scholar 

  11. S. Fares, Nat. Sci. 3, 1034 (2011).

    Google Scholar 

  12. J. Obrzut, A. Anopchenko, K. Kano, and H. Wang, Mater. Res. Soc. Symp. Proc. 783, B3.5 (2004).

  13. A. G. Karpov and V. A. Klemeshev, Tech. Phys. 63, 618 (2018).

    Article  Google Scholar 

Download references

Funding

This study was financially supported by a program aimed at improving the competitiveness of the Tomsk Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Larionov.

Ethics declarations

The authors claim that they do not have any conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Larionov, V.V. & Lider, A.M. Dielectric Losses in Hydrogen-Saturated VT1-0 Titanium Induced by Eddy Current Propagation. Tech. Phys. 65, 93–95 (2020). https://doi.org/10.1134/S1063784220010260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220010260

Navigation