Skip to main content
Log in

Electrochemical Emission during the Straining and Destruction of an Aluminum–Magnesium Alloy in an Aqueous Medium

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The spatiotemporal structures of Portevin–Le Chatelier deformation bands at the stage of neck formation and fracture of an aluminum–magnesium alloy deformed in an aqueous medium have been studied using a complex of in situ methods, including the method of high-speed video recording of the surface and the electrochemical emission method. The latter is based on the measurement and analysis of jumps in the electrode potential of a deformed metal under conditions when discontinuous deformation is manifested. It is found that discrete electrochemical emission signals in the frequency range from 10 Hz to 10 kHz contain information on the number of deformation bands, the time of their emergence, their growth stages, their statistical temporal structure, etc. A characteristic series of signals was detected at the prefracture stage, which can be considered the electrochemical precursor of neck formation and specimen destruction. The relationship between the emergence of electrochemical emission signals and the localization of plastic deformation and the destruction of an oxide film on the surface of an aluminum alloy that is in contact with an aqueous medium is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. A. Stepanov, Foundations of the Plastic Strength of Crystals (Nauka, Moscow, 1974).

    Google Scholar 

  2. H. Halim, D. S. Wilkinson, and M. Niewczas, Acta Mater. 55, 4151 (2007). https://doi.org/10.1016/j.actamat.2007.03.007

    Article  Google Scholar 

  3. K. Spencer, S. F. Corbin, and D. J. Lloyd, Mater. Sci. Eng. A 325, 394 (2002). https://doi.org/10.1016/S0921-5093(01)01481-2

    Article  Google Scholar 

  4. V. E. Panin, L. S. Derevyagina, E. E. Deryugin, et al., Fiz. Mezomekh. 6 (6), 97 (2003).

    Google Scholar 

  5. V. E. Panin amd Yu. V. Grinyaev, Fiz. Mezomekh. 6 (4), 9 (2003).

  6. L. S. Derevyagina, V. E. Panin, and A. I. Gordienko, Fiz. Mezomekh. 10 (4), 59 (2007).

    Google Scholar 

  7. A. A. Shibkov, A. E. Zolotov, M. A. Zheltov, A. V. Shuklinov, and A. A. Denisov, Phys. Solid State 53, 1975 (2011).

    Article  ADS  Google Scholar 

  8. A. A. Shibkov, M. A. Zheltov, A. E. Zolotov, and A. A. Denisov, Phys. Solid State 53, 1981 (2011).

    Article  ADS  Google Scholar 

  9. D. Yuzbekova, A. Mogucheva, D. Zhemchuzhnikova, T. Lebedkina, M. Lebyodkin, and R. Kaibyshev, Intern. J. Plast. 96, 210 (2017). https://doi.org/10.1016/j.ijplas.2017.05.004

    Article  Google Scholar 

  10. A. A. Shibkov, A. A. Denisov, M. F. Gasanov, A. E. Zolotov, and M. A. Zheltov, Phys. Solid State 61, 157 (2019). https://doi.org/10.1134/S1063783419020264

    Article  ADS  Google Scholar 

  11. A. A. Shibkov, A. A. Denisov, M. F. Gasanov, A. E. Zolotov, and M. A. Zheltov, Crystallogr. Rep. 64, 731 (2019).

    Article  ADS  Google Scholar 

  12. Ch. Vargel, Corrosion of Aluminum (Elsevier, 2004).

    Google Scholar 

  13. A. A. Shibkov, A. E. Zolotov, D. V. Mikhlik, M. A. Zheltov, A. V. Shuklinov, V. A. Averkov, and A. A. Denisov, Russ. Metall. 2010, 881 (2010).

    Article  ADS  Google Scholar 

  14. R. Hill, The Mathematical Theory of Plasticity (Clarendon, 1998).

    MATH  Google Scholar 

  15. T. A. Lebedkina and M. A. Lebyodkin, Acta Mater. 56, 5567 (2008). https://doi.org/10.1016/j.actamat.2008.07.025

    Article  Google Scholar 

  16. B. Gutenberg and C. F. Richter, Ann. Geophis. 9, 1 (1956).

    Google Scholar 

  17. H. J. Jensen, Self-Organized Criticality (Cambridge Univ. Press, 1998).

    Book  Google Scholar 

  18. P. Bak, C. Tang, and K. Wiessenfeld, Phys. Rev. A 38, 364 (1988). https://doi.org/10.1103/PhysRevA.38.364

    Article  MathSciNet  ADS  Google Scholar 

  19. A. A. Shibkov, A. E. Zolotov, D. V. Mikhlik, M. A. Zheltov, and A. V. Shuklinov, Russ. Metall. 2010, 874 (2010).

    Article  ADS  Google Scholar 

  20. A. A. Shibkov, M. A. Zheltov, M. F. Gasanov, and A. E. Zolotov. Phys. Solid State 60, 320 (2018). https://doi.org/10.1134/S1063783418020257

    Article  ADS  Google Scholar 

  21. K. Chihab, Y. Estrin, L. P. Kubin, and J. Vergnol, Scr. Metall. 21, 203 (1987). https://doi.org/10.1016/0036-9748(87)90435-2

    Article  Google Scholar 

  22. R. W. K. Honeycombe, The Plastic Deformation of Metals (Hodder Arnold, 1984).

    Google Scholar 

  23. V. I. Vladimirov, The Physical Nature of Metal Failure (Metallurgiya, Moscow, 1984).

    Google Scholar 

  24. G. A. Malygin, Phys. Solid State 47, 246 (2005).

    Article  ADS  Google Scholar 

  25. J. Kang, D. S. Wilkinson, M. Jain, J. D. Embury, A. J. Beaudoin, S. Kim, R. Mishira, and A. K. Sachdev, Acta Mater. 54, 209 (2006). https://doi.org/10.1016/j.actamat.2005.08.045

    Article  Google Scholar 

  26. Z. Marciniak, J. L. Duncan, and S. J. Hu, Mechanics of Sheet Metal Forming, 2nd ed. (Butterworth-Heinemann, Oxford, 2002).

    Google Scholar 

  27. A. A. Shibkov, A. E. Zolotov, M. A. Zheltov, A. A. Denisov, M. F. Gasanov, and S. S. Kochegarov, Tech. Phys. 61, 707 (2016).

    Article  Google Scholar 

Download references

Funding

High-speed in situ studies of the dynamics of deformation bands and cracks were conducted with partial support from the Russian Science Foundation (project no. 18-19-00304). Electrochemical measurements in an aggressive medium were performed within State assignment no. 3.8515.2017/8.9 from the Ministry of Education and Science of the Russian Federation using the equipment of Center for Collective Use, Derzhavin Tambov State University. A statistical analysis of the deformation bands and electrochemical emission signals was carried out with the support of the Russian Foundation for Basic Research (project no. 19-08-00395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shibkov.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibkov, A.A., Gasanov, M.F., Zolotov, A.E. et al. Electrochemical Emission during the Straining and Destruction of an Aluminum–Magnesium Alloy in an Aqueous Medium. Tech. Phys. 65, 78–86 (2020). https://doi.org/10.1134/S1063784220010247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220010247

Navigation