Skip to main content
Log in

Correlation between Thermophysical and Acoustic Properties in Oils

  • ACOUSTICS, ACOUSTOELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of measuring the thermophysical and acoustic properties of four samples of natural oils in the temperature range 293–353 K at atmospheric pressure are presented. The correlation between thermophysical and acoustic properties in oils is shown. The correlation indicates the possibility of applying the concepts of heat transfer in complex hydrocarbon systems through hyper-sonic sound motions, taking into account their absorption and scattering by density fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. Missenard, Conductivité Thermique des Solides, Liquides, Gaz et de Leurs Mélanges (Eyrolles, Paris, 1965).

    Google Scholar 

  2. L. P. Filippov, A Study into the Thermal Conductivity of Liquids (Mosk. Gos. Univ., Moscow, 1970).

    Google Scholar 

  3. V. G. Kutcherov, B. Håkansson, R. G. Ross, et al., J. Appl. Phys. 71, 1732 (1992).

    Article  ADS  Google Scholar 

  4. D. Enskog, K. Sven. Vetenskapsakad. Handl. 63 (4), 5 (1922).

    Google Scholar 

  5. S. A. Rice, J. G. Kirkwood, J. Ross, et al., J. Chem. Phys. 31, 575 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  6. J. Osida, Proc. Phys.-Math. Soc. Jpn. 21, 353 (1939).

    Google Scholar 

  7. J. K. Horroks and E. McLaughlin, Proc. R. Soc. London A 273, 259 (1963).

    ADS  Google Scholar 

  8. E. McLaughlin, Chem. Rev. 64, 390 (1964).

    Article  Google Scholar 

  9. B. E. Poling, J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed. (McGraw-Hil, New York, 2001).

    Google Scholar 

  10. G. Latini and C. Baroncini, High Temp. High Pressures 15, 407 (1982).

    Google Scholar 

  11. L. Brillouin, C. R. Acad. Sci. 159, 27 (1914).

    Google Scholar 

  12. N. P. Pashskii, Zh. Russ. Fiz.-Khim. O-va. 48, 276 (1915).

    Google Scholar 

  13. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 59, 141 (1923).

    Article  Google Scholar 

  14. J. E. Kincaid and H. Eyring, J. Chem. Phys. 6, 620 (1938).

    Article  ADS  Google Scholar 

  15. E. V. Borovik, Zh. Exp. Teor. Fiz. 8, 48 (1948).

    Google Scholar 

  16. A. Kardos, Z. Ges. Kälte-Ind. 41, 1 (1934);

    Google Scholar 

  17. A. Kardos, Z. Ges. Kälte-Ind. 41, 29 (1934).

    Google Scholar 

  18. B. C. Sakiadis and J. Coates, Am. Inst. Chem. Eng. J. 1, 275 (1955).

    Article  Google Scholar 

  19. M. F. Shirokov, in Viscosity of Liquids and Colloidal Solutions (Akad. Nauk SSSR, Moscow, 1944), p. 35.

    Google Scholar 

  20. V. G. Kucherov, Candidate’s Dissertation in Engineering (Moscow Univ. of Oil and Gas, Moscow, 1987).

  21. L. P. Filippov, The Law of Corresponding States (Mosk. Gos. Univ., Moscow, 1983).

    Google Scholar 

Download references

Funding

This study was supported financially by Flotten A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kucherov.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucherov, V.G., Serebryakov, S.G. & Chernoutsan, A.I. Correlation between Thermophysical and Acoustic Properties in Oils. Tech. Phys. 65, 124–127 (2020). https://doi.org/10.1134/S1063784220010156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220010156

Navigation