Skip to main content
Log in

Stability of Polymer Composites with Tungsten Oxide against Electron Irradiation

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Physicomechanical and thermal properties of polymer composites based on polyimide and tungsten oxide (WO3) are presented. Computational and experimental methods are used to study stability of the composites irradiated with high-energy (0.5–5 MeV) electrons. Electron paths in the composites with different contents of the tungsten oxide are obtained for the energy interval under study. Experimental and calculated electron paths differ by ±15%. Transmission coefficients with respect to a number of particles and energy are simulated versus thickness of the composite with optimal (60 wt %) content of WO3 for incidence of electrons at angles of φ = 0 (normal incidence) and 45°. It is shown that the composite can be used for protection against electron irradiation in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. V. Vlasenko and V. V. Skryabin, Aktual. Probl. Aviats. Kosmonavt. 1, 71 (2016).

    Google Scholar 

  2. L. A. Fielding, J. K. Hillier, M. J. Burchell, and S. P. Armes, Chem. Commun. 51, 16886 (2015). https://doi.org/10.1039/c5cc07405c

    Article  Google Scholar 

  3. V. A. Shuvalov, N. A. Tokmak, N. I. Pis’mennyi, and G. S. Kochubei, Kosm. Nauka Tekhnol. 18 (3), 10 (2012).

    Article  Google Scholar 

  4. N. I. Cherkashina and A. V. Pavlenko, Tech. Phys. 63, 571 (2018). https://doi.org/10.1134/S1063784218040072

    Article  Google Scholar 

  5. C. Li, M. M. Mikhailov, and V. V. Neshchimenko, Nucl. Instrum. Methods Phys. Res., Sect. B 319, 123 (2014). https://doi.org/10.1016/j.nimb.2013.11.007

    Article  Google Scholar 

  6. I. P. Bezrodnykh, A. P. Tyutnev, and V. T. Semenov, Radiation Effects in Space. Part 2. The Effect of Space Radiation on Electrotechnical Materials (AO Korporatsiya VNIIEM, Moscow, 2016).

    Google Scholar 

  7. Z. Kacarevic-Popovic, I. D. Kostosk, L. Novakovic, N. Miljevic, and B. Secerov, J. Serb. Chem. Soc. 69, 1029 (2004).

    Article  Google Scholar 

  8. A. Faltermeier, C. Reicheneder, P. Römer, A. Castro-Laza, and P. Proff, J. Orofacial Orthop. 75, 334 (2014). https://doi.org/10.1007/s00056-014-0229-5

    Article  Google Scholar 

  9. G. S. Alekseev, A. V. Grishin, S. A. Gornostai-Pol’skii, A. V. Grunin, I. M. Danilova, N. A. Kuimova, S. A. Lazarev, A. M. Molitvin, A. I. Tikhonov, and D. V. Tkachuk, in Proc. VIII Khariton Readings, Sarov,2007, p. 11.

  10. H. Garrett and A. Whittlesey, Guide to Mitigating Spacecraft Charging Effects (Wiley, 2012).

    Book  Google Scholar 

  11. V. M. Gavrish, G. A. Baranov, T. V. Chayka, N. M. Derbasova, A. V. Lvov, and Y. M. Matsuk, IOP Conf. Ser.: Mater. Sci. Eng. 110, 012028 (2016). https://doi.org/10.1088/1757-899X/110/1/012028

  12. A. M. Osman, A. M. Abdel-Monem, and F. F. Mansour Aly, J. Chem., Biol. Phys. Sci. 6, 302 (2016).

    Google Scholar 

  13. G. A. Aycik and E. E. Belgin, Int. J. Chem. Chem. Eng. Syst. 3, 1 (2018).

    Google Scholar 

  14. V. I. Pavlenko, R. N. Yastrebinskii, O. D. Edamenko, and A. V. Yastrebinskaya, Vestn. Belgorod. Gos. Tekhnol. Univ., No. 3, 62 (2009).

  15. V. I. Shapovalov, A. E. Lapshin, A. E. Komlev, M. Yu. Arsent’ev, and A. A. Komlev, Tech. Phys. 58, 1313 (2013).

    Article  Google Scholar 

  16. A. Fakhri and S. Behrouz, Solar Energy 112, 163 (2015). https://doi.org/10.1016/j.solener.2014.11.014

    Article  ADS  Google Scholar 

  17. B. X. Zou, Y. Wang, and F. Huang, Adv. Mater. Res. 968, 72 (2014). https://doi.org/10.4028/www.scientific.net/AMR.968.72

  18. V. I. Shapovalov, A. E. Komlev, A. A. Komlev, A.  A.  Morozova, and A. E. Lapshin, Glass Phys. Chem. 39, 664 (2013). https://doi.org/10.1134/S1087659613060096

    Article  Google Scholar 

  19. H. O. Tekin, V. P. Singh, and T. Manici, Appl. Radiat. Isot. 121, 122 (2017). https://doi.org/10.1016/j.apradiso.2016.12.040

    Article  Google Scholar 

  20. S. Malekie and N. Hajiloo, Chin. Phys. Lett. 34, 108102 (2017). https://doi.org/10.1088/0256-307X/34/10/108102

    Article  ADS  Google Scholar 

  21. N. Z. Azman, S. A. Siddiqui, and I. M. Low, Mater. Sci. Eng. C 33, 4952 (2013). https://doi.org/10.1016/j.msec.2013.08.023

    Article  Google Scholar 

  22. K. M. Ali, K. K. Mohammad, and F. S. Atallah, J. Radiat. Nucl. Appl. 3, 191 (2018). https://doi.org/10.18576/jrna/030309

    Article  Google Scholar 

  23. K.-P. Yoo,  M. J. Lee,  K.-H. Kwon,  J. Jeong,  and N.-K. Min, Thin Solid Films 518, 5986 (2010). https://doi.org/10.1016/j.tsf.2010.05.099

    Article  ADS  Google Scholar 

  24. N. I. Cherkashina, V. I. Pavlenko, and A. V. Noskov, Radiat. Phys. Chem. 159, 111 (2019). https://doi.org/10.1016/j.radphyschem.2019.02.041

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-19-00316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Cherkashina.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherkashina, N.I. Stability of Polymer Composites with Tungsten Oxide against Electron Irradiation. Tech. Phys. 65, 107–113 (2020). https://doi.org/10.1134/S1063784220010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220010028

Navigation