Skip to main content
Log in

Spontaneous Transitions to High-Conductivity States in Polyvinylchloride Composite Films

  • PHYSICS OF LOW-DIMENSIONAL STRUCTURES
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Experimental results on anomalous conductivity in specifically synthesized copolymer films are analyzed. Polyacetylene molecular fragments with variable concentration are introduced into polyvinylchloride macromolecules. It is shown that such samples exhibit spontaneous and stimulated conductivity jumps by 13 orders of magnitude and the lifetime of such states may range from several minutes to a day. A qualitative model is proposed to describe the anomalous behavior of the polyvinylchloride composite including effects that provide stabilization of the high-conductivity states, conditions for development of instability in the transitions between the states, and the reasons for long-lived high-conductivity state even in the absence of external voltage. Simple numerical estimations that prove the proposed effects are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. Barford, Electronic and Optical Properties of Conjugated Polymers (Clarendon, Oxford, 2005).

    Google Scholar 

  2. M. Wan, Conducting Polymers with Micro or Nanometer Structure (Springer, 2008).

    Google Scholar 

  3. A. N. Lachinov and N. V. Vorob’eva, Phys.-Usp. 49, 1223 (2006).

    Article  Google Scholar 

  4. K. Friedrich, S. Fakirov, and Z. Zhang, Polymer Composites. From Nano- to Macro-Scale (Springer, 2005).

    Google Scholar 

  5. Polymer Nanocomposites, Ed. by Y.-W. Mai and Z.-Z. Yu (Woodhead, Cambridge, 2006).

    Google Scholar 

  6. I. V. Dolbin, G. V. Kozlov, and G. E. Zaikov, Structural Stabilization of Polymers: Fractal Models (Akademiya Estestvoznaniya, 2007).

    Google Scholar 

  7. R. A. Pethrick, Polymer Structure Characterization: From Nano To Macro Organization (Royal Society of Chemistry, 2013).

    Google Scholar 

  8. D. V. Vlasov, V. I. Kryshtob, T. V. Vlasova, L. A. Apresyan, and S. I. Rasmagin, Polym. Sci. Ser. A 57, 304 (2015). https://doi.org/10.1134/S0965545X15030165

    Article  Google Scholar 

  9. S. I. Rasmagin, V. I. Krasovskii, D. V. Vlasov, L. A. Apresyan, T. V. Vlasova, V. I. Kryshtob, I. N. Feofanov, and M. A. Kazaryan, Proc. SPIE 9810, 98100C (2015). https://doi.org/10.1117/12.2224963

    Article  ADS  Google Scholar 

  10. V. I. Kryshtob and S. I. Rasmagin, Tech. Phys. 62, 1689 (2017). https://doi.org/10.1134/S1063784217110196

    Article  Google Scholar 

  11. V. I. Kryshtob, D. V. Vlasov, V. F. Mironov, L. A. Apresyan, T. V. Vlasova, S. I. Rasmagin, Z. A. Kuratashvili, and A. A. Solovskii, Russ. Electr. Eng. 86, 471 (2015).

    Article  Google Scholar 

  12. V. I. Kryshtob, D. V. Vlasov, V. F. Mironov, L. A. Apresyan, T. V. Vlasova, S. I. Rasmagin, Z. A. Kuratashvili, and A. A. Solovskii, Russ. Electr. Eng. 85, 318 (2014).

    Article  Google Scholar 

  13. S. I. Peredereeva, I. G. Orlov, and M. I. Cherkashin, Russ. Chem. Rev. 44, 295 (1975).

    Article  ADS  Google Scholar 

  14. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979).

    Google Scholar 

  15. P. Stallinga, Adv. Mater. 23, 3356 (2011).

    Article  Google Scholar 

  16. P. Sheng, Phys. Rev. 21, 2180 (1980).

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2004).

    MATH  Google Scholar 

  18. K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969).

    Google Scholar 

  19. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).

    Google Scholar 

  20. S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).

    Article  ADS  Google Scholar 

  21. O. A. Skaldin, A. Yu. Zherebov, A. N. Lachinov, A. N. Chuvyrov, and V. A. Delev, JETP Lett. 51, 159 (1990).

    ADS  Google Scholar 

  22. N. S. Enikolopyan, Yu. A. Berlin, S. I. Beshenko, and V. A. Zhorin, JETP Lett. 33, 492 (1981).

    ADS  Google Scholar 

  23. Yu. A. Berlin, S. I. Beshenko, and V. A. Zhorin, Dokl. Akad. Nauk SSSR 260, 1389 (1981).

    Google Scholar 

  24. V. I. Kryshtob, S. I. Rasmagin, and T. V. Vlasova, Russ. Electr. Eng. 89, 385 (2018).

    Article  Google Scholar 

  25. S. I. Rasmagin, V. I. Krasovskii, I. K. Novikov, I. K. Novikov, and I. N. Fofanov, Proc. SPIE 10614, 106140B (2018). https://doi.org/10.1117/12.2302981

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Rasmagin.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasova, T.V., Rasmagin, S.I. Spontaneous Transitions to High-Conductivity States in Polyvinylchloride Composite Films. Tech. Phys. 64, 1837–1842 (2019). https://doi.org/10.1134/S1063784219120260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219120260

Navigation