Skip to main content
Log in

Effects Associated with Confined Geometry in Nanocomposites Based on Mesoporous 2D-SBA-15 and 3D-SBA-15 Matrices Containing Sodium Nitrite Nanoparticles

  • ELECTROPHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Temperature dependences of the ferroelectric order parameter for nanostructured sodium nitrite under heating and cooling were obtained by analyzing the temperature evolution of diffraction spectra of neutron scattering by composites obtained by introducing sodium nitrite into pores of mesoporous 2D-SBA-15 (the average pore diameter is 69(4) Å) and 3D-SBA-15 (94(5) Å) matrices. It was demonstrated that the phase transition to the paraelectric phase in the process of heating occurs at TC = 433 ± 1 K in both nanocomposite materials. It was found that these sizes decrease at approaching to the ferroelectric phase transition point on heating. Temperature hysteresis (~15–20 K) in the temperature dependence of the order parameter between the heating and cooling regimes was revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. I. Kay, Ferroelectrics 4, 235 (1972).

    Article  Google Scholar 

  2. E. V. Colla, E. Yu. Koroleva, Yu. A. Kumzerov, B. N. Savenko, and S. B. Vakhrushev, Ferroelectr., Lett. Sect. 20, 143 (1996).

    Article  Google Scholar 

  3. A. Naberezhnov, A. Fokin, Yu. Kumzerov, A. Sotnikov, S. Vakhrushev, and B. Dorner, Eur. Phys. J. E 12, s21 (2003).

    Article  Google Scholar 

  4. S. V. Pan’kova, V. V. Poborchii, and V. G. Solov’ev, J. Phys. Condens. Matter 8, L203 (1996).

    Article  ADS  Google Scholar 

  5. M. Kinka, J. Banys, and A. Naberezhnov, Ferroelectrics 348, 67 (2007).

    Article  Google Scholar 

  6. A. I. Beskrovny, S. G. Vasilovskii, S. B. Vakhrushev, D. A. Kurdyukov, O. I. Zvorykina, A. A. Naberezhnov, N. M. Okuneva, M. Tovar, E. Rysiakiewicz-Pasek, and P. Jagus, Phys. Solid State 52, 1092 (2010).

    Article  ADS  Google Scholar 

  7. S. Borisov, T. Hansen, Yu. Kumzerov, A. Naberezhnov, V. Simkin, O. Smirnov, A. Sotnikov, M. Tovar, and S. Vakhrushev, Phys. B 350, E1119 (2004).

    Article  ADS  Google Scholar 

  8. A. Fokin, Yu. Kumzerov, E. Koroleva, A. Naberezhnov, O. Smirnov, M. Tovar, S. Vakhrushev, and M. Glazman, J. Electroceram. 22, 270 (2009).

    Article  Google Scholar 

  9. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science 279, 548 (1998).

    Article  ADS  Google Scholar 

  10. B. Tian, X. Liu, C. Yu, F. Gao, Q. Luo, S. Xie, B. Tu, and D. Zhao, Chem. Commun., No. 11, 1186 (2002).

  11. Y.-T. Chan, H.-P. Lin, C.-Y. Mou, and S.-T. Liu, Chem. Commun., No. 23, 2878 (2002).

  12. P. Yuan, L. Tan, D. Pan, Y. Guo, L. Zhou, J. Yang, J. Zou, and C. Yu, New J. Chem. 35, 2456 (2011).

    Article  Google Scholar 

  13. O. V. Efimova, E. V. Stukova, E. Yu. Koroleva, and R. V. Sukhanov, Vestn. Amur. Gos. Univ. 79, 165 (2017).

    Google Scholar 

  14. S. B. Vakhrushev, Yu. A. Kumzerov, A. Fokin, A. A. Naberezhnov, B. Zalar, A. Lebar, and R. Blinc, Phys. Rev. B 70, 132102 (2004).

    Article  ADS  Google Scholar 

  15. C. Tien, E. V. Charnaya, M. K. Lee, S. V. Baryshnikov, S. Y. Sun, D. Michel, and W. Böhlmann, Phys. Rev. B 72, 104105 (2005).

    Article  ADS  Google Scholar 

  16. S. V. Baryshnikov, C. Tien, E. V. Charnaya, M. K. Lee, D. Michel, and W. Böhlmann, Ferroelectrics 363, 177 (2008).

    Article  Google Scholar 

  17. E. Rysiakiewicz-Pasek, R. Poprawski, J. Polanska, A. Urbanowicz, and A. Sieradzki, J. Non-Cryst. Solids 352, 4309 (2006).

    Article  ADS  Google Scholar 

  18. V. A. Parfenov, I. V. Ponomarenko, and S. A. Novikova, Mater. Chem. Phys. 232, 193 (2019). https://doi.org/10.1016/j.matchemphys.2019.04.087

    Article  Google Scholar 

  19. A. da Costa Lamas, S.-L. Chang, and S. Caticha-Ellis, Phys. Status Solidi A 68, 173 (1981).

    Article  ADS  Google Scholar 

  20. D. Kucharczyk, A. Pietraszko, and K. Łukaszewicz, Phys. Status Solidi A 37, 287 (1976).

    Article  ADS  Google Scholar 

  21. P. Thompson, D. Cox, and B. Hastings, J. Appl. Phys. 20, 79 (1987).

    Google Scholar 

  22. J. I. Langford, J. Appl. Phys. 11, 10 (1978).

    Google Scholar 

  23. I. V. Golosovsky, R. G. Delaplane, A. A. Naberezhnov, and Yu. A. Kumzerov, Phys. Rev. B 69, 132301 (2004).

    Article  ADS  Google Scholar 

  24. G. Bertsch, Science 277, 1619 (1997).

    Article  Google Scholar 

  25. M. Takagi, J. Phys. Soc. Jpn. 9, 359 (1954).

    Article  ADS  Google Scholar 

  26. M. Zhang, M. Yu. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, Phys. Rev. B 62, 10548 (2000).

    Article  ADS  Google Scholar 

  27. P. Shah and V. Ramaswamy, Microporous Mesoporous Mater. 114, 270 (2008).

    Article  Google Scholar 

  28. E. Rapoport, J. Chem. Phys. 45, 2721 (1966).

    Article  ADS  Google Scholar 

  29. E. Rysiakiewicz-Pasek, J. Komar, A. Ciźman, and R. Poprawski, J. Non-Cryst. Solids 356, 661 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported in part by the Russian Foundation for Basic Research, grant no. 19-02-00760. The research at Peter the Great St. Petersburg Polytechnic University and Amur State University was carried out as part of project no. 3.1150.2017/4.6 and project no. 3.5512.2017/8.9 of the Ministry of Education and Science of the Russian Federation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Naberezhnov.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naberezhnov, A.A., Stukova, E.V., Alekseeva, O.A. et al. Effects Associated with Confined Geometry in Nanocomposites Based on Mesoporous 2D-SBA-15 and 3D-SBA-15 Matrices Containing Sodium Nitrite Nanoparticles. Tech. Phys. 64, 1866–1871 (2019). https://doi.org/10.1134/S106378421912020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421912020X

Navigation