Skip to main content

Stable Overload Operation of High-Temperature Superconductor Protective Resistors


The use of high-temperature superconductor (HTS) resistors to protect electrical equipment and ac networks from emergency short-circuit currents and single phase-to-ground faults has been considered. It has been proposed to use a stable overload operation in HTS composite wires to enhance the speed of response and thermal stability of HTS current-limiting devices. Design solutions for the use of stabilized low-resistance HTS wires in protective resistors for ac networks have been developed that increase the resistance inserted in the circuit by several orders of magnitude. The characteristics of first-generation HTS wires with high critical parameters in the resistive state have been measured in a wide current overload range. Prototypes of instantaneous thermally stable current-limiting devices with HTS protective resistors have been fabricated and tested. The design parameters of HTS protective resistors for use in electric power networks have been calculated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. V. Meerovich and V. Sokolovsky, in Superconductors in the Power Grid: Materials and Applications, Ed. by C. Rey (Elsevier, Cambridge, 2015), p. 283.

    Google Scholar 

  2. A. V. Malginov, A. Yu. Kuntsevich, V. A. Malginov, and L. S. Fleishman, J. Exp. Theor. Phys. 117, 1078 (2013).

    Article  Google Scholar 

  3. A. V. Malginov, A. Yu. Kuntsevich, V. A. Malginov, and L. S. Fleishman, SpringerPlus 2, 535 (2013).

    Article  Google Scholar 

  4. V. A. Malginov, A. V. Malginov, and L. S. Fleishman, SpringerPlus 2, 599 (2013).

    Article  Google Scholar 

  5. E. P. Volkov, L. S. Fleishman, V. A. Malginov, and A. V. Malginov, Izv. Ross. Akad. Nauk, Energ., No. 2, 64 (2009).

  6. L. S. Fleishman, E. P. Volkov, V. A. Malginov, A. V. Malginov, A. Yu. Kuntsevich, and A. S. Sheynshteyn, IEEE Trans. Appl. Supercond. 21, 1263 (2011).

    ADS  Article  Google Scholar 

  7. Electrical Annexes of Power Stations and Substations. College Textbook, Ed. by A. A. Vasil’ev (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  8. V. R. Romanovskii, Tech. Phys. 60, 86 (2015).

    Article  Google Scholar 

  9. V. A. Malginov, A. V. Malginov, L. S. Fleishman, and A. S. Rakitin, Tech. Phys. 62, 1516 (2017).

    Article  Google Scholar 

  10. V. A. Malginov, A. V. Malginov, and D. A. Gorbunova, Tech. Phys. 63, 711 (2018).

    Article  Google Scholar 

  11. L. A. Bessonov, Theoretical Foundations of Electrical Engineering. Electrical Circuits (Vysshaya Shkola, Moscow, 1996).

    Google Scholar 

  12. M. J. Heathcote, The J & P Transformer Book: A Practical Technology of the Power Transformer (Newnes, Oxford, 1998).

    Google Scholar 

  13. Sh. I. Lutidze, L. S. Fleishman, V. A. Malginov, A. V. Mal’ginov, et al., Inzh. Fiz., No. 2, 22 (2004).

  14. L. S. Fleishman, V. A. Malginov, and A. V. Malginov, Therm. Eng. 57, 1217 (2010).

    ADS  Article  Google Scholar 

  15. I. A. Glebov, V. N. Shakhtarin, and Yu. F. Antonov, Issues of Current Injection into Superconducting Devices (Nauka, Leningrad, 1985).

    Google Scholar 

  16. E. P. Volkov, E. A. Dzhafarov, L. S. Fleishman, V. S. Vysotsky, and V. V. Sukonkin, Therm. Eng. 63, 909 (2016).

    ADS  Article  Google Scholar 

  17. V. S. Vysotsky, S. S. Fetisov, V. V. Zubko, et al., IEEE Trans. Appl. Supercond. 27, 5500105 (2017).

    Article  Google Scholar 

  18. E. N. Ryzhkova, Elektrichestvo, No. 3, 16 (2007).

  19. S. S. Titenkov and A. A. Pugachev, Energoekspert, No. 2, 18 (2010).

  20. V. A. Shuin and A. V. Gusenkov, Ground-Fault Protection for 6–10 kV Electric Power Networks (Energoprogress, Moscow, 2001).

    Google Scholar 

  21. L. S. Fleishman, Elektr. Stn., No. 8, 71 (2005).

  22. I. P. Kryuchkov, V. A. Starshinov, Yu. P. Gusev, et al., Short-Circuits and Selection of Electrical Equipment: College Textbook, Ed. by I. P. Kryuchkov and V. A. Starshinov (MEI, Moscow, 2012).

    Google Scholar 

  23. E. P. Volkov, L. S. Fleishman, E. A. Dzhafarov, V. A. Malginov, and A. V. Malginov, Proc. V Int. Conf. “Fundamental Problems of High-Temperature Superconductivity,” Malakhovka, Russia, 2015, p. 224.

  24. N. F. Kotelenets, N. A. Akimova, and M. V. Antonov, Testing, Operation, and Maintenance of Electrical Machinery (Akademiya, Moscow, 2003).

    Google Scholar 

  25. A. V. Ivanov-Smolenskii, Electrical Machinery (MEI, Moscow, 2004), Vol. 1.

    Google Scholar 

Download references


We are grateful to V.M. Pudalov for ongoing support of the chosen direction in studying HTS materials and valuable comments during preparation of this study.

This study was carried out on the equipment of the Shared Facilities Center, Lebedev Physical Institute, Russian Academy of Sciences.


This study was supported by the Presidium of the Russian Academy of Sciences, Fundamental Research Program Fundamental Problems of High-Temperature Superconductivity, and the Russian Foundation for Basic Research, project no. 17-29-10003.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. A. Malginov.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malginov, V.A., Malginov, A.V. & Fleishman, L.S. Stable Overload Operation of High-Temperature Superconductor Protective Resistors. Tech. Phys. 64, 1759–1766 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: