Skip to main content
Log in

Self-Action Effects in the Propagation of Surface Magnetostatic Wave Pulses in a Magnonic Crystal–Dielectric–Metal Structure

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have analyzed the self-action effects in the propagation of surface magnetostatic wave (SMSW) pulses in a 1D magnonic crystal–dielectric–metal structure in which the region of anomalous dispersion controlled by the selection of thickness h of the insulator and ensuring the fulfillment of the Lighthill criterion in the generation of SMSW solitons is formed. It is shown that when the metallization-induced region of anomalous dispersion coincides with the Bragg resonance frequency range, no SMSW solitons form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Marcelli and S. A. Nikitov, Nonlinear Microwave Signal Processing: Towards a New Range of Devices (Kluwer Academic, 1996).

    Book  Google Scholar 

  2. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. N. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevsky, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotsky, V. K. Sakharov, and E. S. Pavlov, Phys.-Usp. 58, 1002 (2015).

    Article  Google Scholar 

  3. R. Sulymenko, O. V. Prokopenko, V. S. Tyberkevych, A. N. Slavin, and A. A. Serga, Low Temp. Phys 44, 602 (2018). https://doi.org/10.1063/1.5041426

    Article  ADS  Google Scholar 

  4. A. V. Sadovnikov, S. A. Odintsov, E. N. Beginin, S. E. Sheshukova, Yu. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. B 96, 144428 (2017). https://doi.org/10.1103/PhysRevB.96.144428

    Article  ADS  Google Scholar 

  5. A. V. Chumak, A. A. Serga, and B. Hillebrands, Nat. Commun. 5, 4700 (2014).

    Article  ADS  Google Scholar 

  6. A. B. Ustinov, A. V. Drozdovskii, and B. A. Kalinikos, Appl. Phys. Lett. 96, 142513 (2010).

    Article  ADS  Google Scholar 

  7. M. Chen, A. N. Slavin, and M. G. Cottam, Phys. Rev. B 47, 8687 (1993).

    ADS  Google Scholar 

  8. A. V. Drozdovskii, M. A. Cherkasskii, A. B. Ustinov, N. G. Kovshikov, and B. A. Kalinikos, JETP Lett. 91, 16 (2010).

    Article  ADS  Google Scholar 

  9. A. B. Ustinov, A. V. Drozdovskii, and B. A. Kalinikos, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 20 (5), 97 (2012). https://doi.org/10.18500/0869-6632-2012-20-5-97-111

    Article  Google Scholar 

  10. A. V. Drozdovskii, B. A. Kalinkos, A. B. Ustinov, and A. Stashkevich, J. Phys.: Conf. Ser. 769, 012072 (2016).

    Google Scholar 

  11. A. B. Ustinov, B. A. Kalinikos, and V. E. Demidov, Phys. Rev. B 81, 180406 (2010).

    Article  ADS  Google Scholar 

  12. M. A. Morozova, Yu. P. Sharaevskii, S. E. Sheshukova, and M. K. Zhamanova, Phys. Solid State 54, 1575 (2012).

    Article  ADS  Google Scholar 

  13. M. A. Morozova, S. A. Nikitov, Yu. P. Sharaevskii, and S. E. Sheshukova, Acta Phys. Pol. A 121, 1173 (2012).

    Article  Google Scholar 

  14. M. A. Morozova, Yu. P. Sharaevskii, and S. E. Sheshukova, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 18, 113 (2010).

    Google Scholar 

  15. M. A. Morozova, O. V. Matveev, and Yu. P. Sharaevskii, Phys. Solid State 58, 1967 (2016).

    Article  ADS  Google Scholar 

  16. A. K. Zvezdin and A. F. Popkov, J. Exp. Theor. Phys. 57, 350 (1983).

    Google Scholar 

  17. B. A. Kalinikos, N. G. Kovshikov, and A. N. Slavin, JETP Lett. 38, 413 (1983).

    ADS  Google Scholar 

  18. M. Chen, M. A. Tsankov, J. M. Nash, and C. E. Patton, J. Appl. Phys. 74, 2146 (1993).

    Article  ADS  Google Scholar 

  19. A. D. Bordman and S. A. Nikitov, Fiz. Tverd. Tela 31 (6), 281 (1989).

    Google Scholar 

  20. Yu. A. Filimonov, R. Marcelli, and S. A. Nikitov, IEEE Trans. Magn. 38, 3105 (2002).

    Article  ADS  Google Scholar 

  21. R. Marcelli, S. A. Nikitov, Yu. A. Filimonov, A. A. Galishnikov, A. V. Kozhevnikov, and G. M. Dudko, IEEE Trans. Magn. 42, 1785 (2006).

    Article  ADS  Google Scholar 

  22. G. M. Dudko, Yu. A. Filimonov, A. A. Galishnikov, R. Marcelli, and S. A. Nikitov, J. Magn. Magn. Mater. 272275, 999 (2004).

  23. A. A. Galishnikov, G. M. Dudko, A. V. Kozhevnikov, R. Marchelli, S. A. Nikitov, and Yu. A. Filimonov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 14 (3), 3 (2006).

    Google Scholar 

  24. M. Mruczkiewicz, E. S. Pavlov, S. L. Vysotskii, M. Krawczyk, Yu. A. Filimonov, and S. A. Nikitov, IEEE Trans. Magn. 50, 2304103 (2014). https://doi.org/10.1109/TMAG.2014.2321329

    Article  Google Scholar 

  25. M. Mruczkiewicz, E. S. Pavlov, S. L. Vysotsky, M. Krawczyk, Yu. A. Filimonov, and S. A. Nikitov, Phys. Rev. B 90, 174416 (2014).

    Article  ADS  Google Scholar 

  26. A. I. Stognii, A. A. Serov, S. V. Koryakin, and V. V. Pan’kov, Instrum. Exp. Tech. 51, 311 (2008).

    Article  Google Scholar 

  27. A. G. Gurevich and G. A. Melkov, Magnetic Oscilations and Waves (Fizmatlit, Moscow, 1994).

    Google Scholar 

  28. Y. V. Khivintsev, Y. A. Filimonov, and S. A. Nikitov, Appl. Phys. Lett. 106, 052407 (2015).

    Article  ADS  Google Scholar 

  29. S. L. Vysotsky, S. A. Nikitov, N. N. Novitskii, A. I. Stognii, and Yu. A. Filimonov, Tech. Phys. 56, 308 (2011).

    Article  Google Scholar 

  30. S. L. Vysotskii, Y. V. Khivintsev, V. K. Sakharov, G.  M.  Dudko, A. V. Kozhevnikov, S. A. Nikitov, N.  N.  Novitskii, A. I. Stognij, and Y. A. Filimonov, IEEE Magn. Lett. 8, 3706104 (2017).

    Article  Google Scholar 

  31. S. Vysotskii, G. Dudko, V. Sakharov, Y. Khivintsev, Y. Filimonov, N. Novitskii, A. Stognij, and S. Nikitov, Acta Phys. Pol. A 133, 508 (2018).

    Article  Google Scholar 

  32. A. A. Galishnikov, A. V. Kozhevnikov, R. Marcelli, S.  A. Nikitov, and Yu. A. Filimonov, Tech. Phys. 51, 595 (2006).

    Article  Google Scholar 

  33. V. S. L’vov, Nonlinear Spin Waves (Nauka, Moscow, 1987).

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 18-57-00005-Bel and 17-07-01452) and was performed under State assignment no. 0030-2019-0013 “Spintronics.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Vysotskii.

Ethics declarations

The authors claim that there are no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, S.L., Pavlov, E.S., Kozhevnikov, A.V. et al. Self-Action Effects in the Propagation of Surface Magnetostatic Wave Pulses in a Magnonic Crystal–Dielectric–Metal Structure. Tech. Phys. 64, 1629–1635 (2019). https://doi.org/10.1134/S106378421911029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421911029X

Navigation