Skip to main content
Log in

Bi-Substituted Iron Garnet Films for Thermomagnetic Recording, Photonics, and Plasmonics: Optimization of Synthesis Conditions Using Scanning Probe Microscopy

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We present the results of studies on the optimization of the synthesis of Bi-substituted iron garnet (Bi : IG) films by liquid-phase epitaxy and vacuum deposition followed by crystallization. The effect of the parameter of mismatch between the crystal lattices of the film and the substrate on the functional properties of thin single-crystal high-coercive Bi : IG films is demonstrated. The regime of high-temperature annealing of deposited films was optimized in order to form layers with a high bismuth concentration for magnetophotonic and magnetoplasmonic structures. It was established that annealing of the Bi : IG layer under a SiO2 layer deposited on top will reduce the roughness of interfaces in multilayer structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Inoue, A. V. Baryshev, T. Goto, S. M. Baek, S. Mito, H. Takagi, and P. B. Lim, in Magnetophotonics, Ed. by M. Inoue, M. Levy, and A. V. Baryshev (Springer, 2013), p. 163.

    Book  Google Scholar 

  2. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, E. A. Shapovalov, and Th. Rasing, J. Phys. D 36, R277 (2003).

    Article  ADS  Google Scholar 

  3. M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P. B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, J. Phys. D 39, R151 (2006).

    Article  ADS  Google Scholar 

  4. V. N. Berzhansky, A. V. Karavainikov, T. V. Mikhailova, A. R. Prokopov, A. N. Shaposhnikov, A. G. Shumilov, N. V. Lugovskoy, E. Y. Semuk, M. F. Kharchenko, I. M. Lukienko, Yu. M. Kharchenko, and V. I. Belotelov, J. Magn. Magn. Mater. 440, 175 (2017).

    Article  ADS  Google Scholar 

  5. V. J. Fratello, S. J. Licht, C. D. Brandle, H. M. O’Bryan, and F. A. Baiocchi, J. Cryst. Growth 142, 93 (1994).

    Article  ADS  Google Scholar 

  6. P. Hansen and K. Witter, J. Appl. Phys. 58, 454 (1985).

    Article  ADS  Google Scholar 

  7. A. R. Prokopov, P. M. Vetoshko, A. G. Shumilov, A. N. Shaposhnikov, A. N. Kuz’michev, N. N. Koshlyakova, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, J. Alloys Compd. 671, 403 (2016).

    Article  Google Scholar 

  8. V. Vishnevskii, A. Nesteruk, A. Nedviga, S. Dubinko, and A. Prokopov, Sens. Lett. 5, 29 (2007).

    Article  Google Scholar 

  9. S. Dubinko, A. Nedviga, V. Vishnevskii, A. Shaposhnikov, V. Yagupov, A. Nesteruk, and A. Prokopov, Tech. Phys. Lett. 31, 979 (2005).

    Article  Google Scholar 

  10. V. Berzhansky, A. Nedviga, V. Vishnevskii, and A. Prokopov, Solid State Phenom. 152153, 11 (2009).

  11. V. N. Berzhansky, V. G. Vishnevskii, A. S. Nedviga, and A. G. Nesteruk, J. Magn. 14, 108 (2009).

    Article  Google Scholar 

  12. V. N. Berzhansky, V. G. Vishnevskii, H. T. Milyukova, A. S. Nedviga, A. G. Nesteruk, and H. V. Danishevskaya, Acta Phys. Pol. A 118, 864 (2010).

    Article  Google Scholar 

  13. V. G. Vishnevskii, A. S. Nedviga, A. G. Nesteruk, V. N. Berzhanskii, and I. V. Dudarenko, Uch. Zap. Tavricheskogo Nats. Univ. Ser. Fiz.-Mat. Nauki 23 (1), 158 (2010).

    Google Scholar 

  14. Yu. E. Vysokikh, S. Yu. Krasnoborod’ko, V. I. Shevyakov, V. N. Berzhanskii, T. V. Mikhailova, A. N. Shaposhnikov, A. R. Prokopov, and A. S. Nedviga, Izv. Vyssh. Uchebn. Zaved., Elektron. 22, 596 (2017).

    Google Scholar 

  15. V. Berzhansky, Y. Danishevskaya, A. Nedviga, and M. Bektemirova, J. Phys.: Conf. Ser. 1124, 061006 (2018).

    Google Scholar 

  16. Y. V. Danishevskaya, A. S. Krikun, A. S. Nedviga, and V. N. Berzhansky, J. Phys.: Conf. Ser. 917, 072004 (2017).

    Google Scholar 

  17. M.-Y. Chern and J.-S. Liaw, Jpn. J. Appl. Phys. 36, 1049 (1997).

    Article  ADS  Google Scholar 

  18. S. Kahl and A. M. Grishin, Appl. Phys. Lett. 84, 1438 (2004).

    Article  ADS  Google Scholar 

  19. D. O. Dzibrou and A. M. Grishin, J. Appl. Phys 106, 043901 (2009).

    Article  ADS  Google Scholar 

  20. S. Leitenmeier, T. Koerner, J. Griesbauer, and M. Herbort, J. Cryst. Growth 310, 5392 (2008).

    Article  ADS  Google Scholar 

  21. M. Veis, E. Lišková, R. Antoš, Š. Višňovský, N. Kumar, D. S. Misra, N. Venkataramani, S. Prasad, and R. Krishnan, Thin Solid Films 519, 8041 (2011).

    Article  ADS  Google Scholar 

  22. M. Gomi, T. Tanida, and M. Abe, J. Appl. Phys. 57, 3888 (1985).

    Article  ADS  Google Scholar 

  23. T. Suzuki, J. Appl. Phys. 69, 4756 (1991).

    Article  ADS  Google Scholar 

  24. M. Nur-E-Alam, M. Vasiliev, K. Alameh, and V. Kotov, Adv. Opt. Technol. 2011, 971267 (2011).

    Google Scholar 

  25. T. Okuda, N. Koshizuka, K. Hayashi, et al., IEEE Trans. Magn 23, 3491 (1987).

    Article  ADS  Google Scholar 

  26. V. N. Berzhansky, A. N. Shaposhnikov, A. R. Prokopov, A. V. Karavainikov, T. V. Mikhailova, E. Yu. Semuk, M.  I. Sharipova, T. V. Dolgova, A. A. Fedyanin, V. A. Kotov, and V. O. Golub, Materialwiss. Werkstofftech. 42, 19 (2011).

    Article  Google Scholar 

  27. A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. V. Karavainikov, Y. E. Vysokikh, N. N. Gerasimenko, and D. I. Smirnov, Mater. Res. Bull. 95, 115 (2017).

    Article  Google Scholar 

  28. A. N. Shaposhnikov, A. R. Prokopov, A. V. Karavainikov, V. N. Berzhansky, T. V. Mikhailova, V. A. Kotov, D. E. Balabanov, I. V. Sharay, O. Y. Salyuk, M. Vasiliev, and V. O. Golub, Mater. Res. Bull. 55, 19 (2014).

    Article  Google Scholar 

  29. T. V. Mikhailova, V. N. Berzhansky, A. N. Shaposhnikov, A. V. Karavainikov, A. R. Prokopov, Yu. M. Kharchenko, I. M. Lukienko, O. V. Miloslavskaya, and M. F. Kharchenko, Opt. Mater. 78, 521 (2018).

    Article  ADS  Google Scholar 

  30. T. V. Mikhailova, S. D. Lyashko, S. V. Tomilin, A. V. Karavainikov, A. R. Prokopov, A. N. Shaposhnikov, V. N. Berzhansky, J. Phys.: Conf. Ser. 917, 062053 (2017).

    Google Scholar 

  31. V. N. Berzhansky, A. N. Shaposhnikov, A. R. Proko-pov, A. V. Karavainikov, T. V. Mikhailova, I. N. Lukienko, Yu. N. Kharchenko, V. O. Golub, O. Yu. Salyuk, and V. I. Belotelov, J. Exp. Theor. Phys. 123, 744 (2016).

    Article  ADS  Google Scholar 

  32. M. C. Onbasli, T. Goto, X. Sun, N. Huynh, and C. A. Ross, Opt. Express 1, 25184 (2014).

    Google Scholar 

  33. T. Okuda, T. Katayama, K. Satoh, and H. Yamamoto, J. Appl. Phys. 69, 4580 (1991).

    Article  ADS  Google Scholar 

  34. H. Toraya and T. Okuda, J. Phys. Chem. Solids 56, 1317 (1995).

    Article  ADS  Google Scholar 

  35. T. Okuda, A. Kudox, S. Yoshihara, et al., J. Phys. IV 7, C1-707 (1997).

    Google Scholar 

Download references

Funding

The studies are supported by the Ministry of Science and Higher Education of the Russian Federation within the fundamental part of the state assignment (project no. 3.7126.2017/8.9) and in the framework of Vernadsky Crimean Federal University grant no. VG13/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Mikhailova.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokopov, A.R., Mikhailova, T.V., Danishevskaya, E.V. et al. Bi-Substituted Iron Garnet Films for Thermomagnetic Recording, Photonics, and Plasmonics: Optimization of Synthesis Conditions Using Scanning Probe Microscopy. Tech. Phys. 64, 1709–1715 (2019). https://doi.org/10.1134/S1063784219110239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219110239

Navigation