Skip to main content
Log in

Functional Magnon Network Blocks Based on Structures with Translational Symmetry Violation

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have studied the properties of spin-wave excitations in a structure that is a junction of two regular magnon waveguides. The proposed structure enables the transmission of spin-wave signals in an irregular structure in the propagation mode of a surface magnetostatic wave. Using the method of micromagnetic simulation, the characteristics of the wave process have been calculated when changing the structure parameters, magnitude and direction of a magnetization field. It is shown that a system with translational symmetry violation can be used to transmit a signal in three-dimensional configurations of magnon networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. V. Sadovnikov, C. S. Davies, V. V. Kruglyak, D.  V.  Romanenko, S. V. Grishin, E. N. Beginin, Y. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. B 96, 060401 (2017).

    Article  ADS  Google Scholar 

  2. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. N. Slavin, Y. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Y. P. Sharaevsky, Y. A. Filimonov, Y. V. Khivintsev, S. L. Vysotsky, V. K. Sakharov, and E. S. Pavlov, Phys.-Usp. 185, 1099 (2015).

    Google Scholar 

  3. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D 43, 264001 (2010).

    Article  ADS  Google Scholar 

  4. A. V. Sadovnikov, A. A. Grachev, S. E. Sheshukova, Yu. P. Sharaevskii, A. A. Serdobintsev, D. M. Mitin, and S. A. Nikitov, Phys. Rev. Lett. 120, 257203 (2018).

    Article  ADS  Google Scholar 

  5. A. Khitun, M. Bao, and K. L. Wang, J. Phys. D 43, 264005 (2010).

    Article  ADS  Google Scholar 

  6. V. E. Demidov, S. Urazhdin, G. DeLoubens, O. Klein, V. Cros, A. Anane, and S. O. Demokritov, Phys. Rep. 673, 1 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. http://www.itrs2.net/itrs-reports.html.

  8. J. H. Lau, Through-Silicon Vias for 3D Integration (McGraw-Hill Education, 2013).

    Google Scholar 

  9. A. V. Sadovnikov, E. N. Beginin, K. V. Bublikov, S. V. Grishin, S. E. Sheshukova, Yu. P. Sharaevskii, and S. A. Nikitov, J. Appl. Phys. 118, 203906 (2015).

    Article  ADS  Google Scholar 

  10. J. Burghartz, Ultra-Thin Chip Technology and Applications (Springer, New York, 2011).

    Book  Google Scholar 

  11. S. Demokritov, Spin Wave Confinement: Propagating Waves, 2nd ed. (Pan Stanford, 2017).

    Book  Google Scholar 

  12. E. N. Beginin, A. V. Sadovnikov, A. Y. Sharaevskaya, A. I. Stognij, and S. A. Nikitov, Appl. Phys. Lett. 112, 122404 (2018).

    Article  ADS  Google Scholar 

  13. A. V. Sadovnikov, A. A. Grachev, S. A. Odintsov, A. A. Martyshkin, V. A. Gubanov, S. E. Sheshukova, and S. A. Nikitov, JETP Lett. 108, 312 (2018).

    Article  ADS  Google Scholar 

  14. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC Press, 1996).

    Google Scholar 

  15. D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Applications (Springer, New York, 2009).

    MATH  Google Scholar 

  16. A. V. Vashkovskii, V. S. Stal’makhov, and Yu. P. Sharaevskii, Magnetostatic Waves in Microwave Electronics (Sarat. Gos. Univ., Saratov, 1993).

    Google Scholar 

  17. T. Bracher, P. Pirro, J. Westermann, T. Sebastian, B.  Lagel, B. Van de Wiele, A. Vansteenkiste, and B. Hillebrands, Appl. Phys. Lett. 102, 132411 (2013).

    Article  ADS  Google Scholar 

  18. A. V. Sadovnikov, C. S. Davies, S. V. Grishin, V. Kruglyak, D. V. Romanenko, Yu. P. Sharaevskii, and S. A. Nikitov, Appl. Phys. Lett. 106, 192406 (2015).

    Article  ADS  Google Scholar 

  19. C. S. Davies, A. Francies, A. V. Sadovnikov, S. V. Chertopalov, M. T. Bryan, S. V. Grishin, D. A. Allwood, Yu. P. Sharaevskii, S. A. Nikitov, and V. V. Kruglyak, Phys. Rev. B 92, 020408 (2015).

    Article  ADS  Google Scholar 

  20. R. W. Damon and J. R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961).

    Article  ADS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982).

    Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).

    Google Scholar 

  23. J. Berenger, J. Comput. Phys. 114, 185 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv. 4, 107133 (2014).

    Article  ADS  Google Scholar 

  25. S. O. Demokritov, A. A. Serga, A. Andre, V. E. Demidov, M. P. Kostylev, B. Hillebrands, and A. N. Slavin, Phys. Rev. Lett. 93, 047201 (2004).

    Article  ADS  Google Scholar 

  26. M. J. Hurben and C. E. Patton, J. Magn. Magn. Mater. 163, 39 (1996).

    Article  ADS  Google Scholar 

  27. E. Schlömann, J. Appl. Phys. 35, 159 (1964).

    Article  ADS  Google Scholar 

  28. E. Schlömann and R. I. Joseph, J. Appl. Phys. 33, 167 (1964).

    Article  ADS  Google Scholar 

  29. P. A. Popov, A. Yu. Sharaevskaya, E. N. Beginin, A.  V.  Sadovnikov, A. I. Stognij, D. V. Kalyabin, and S. A. Nikitov, J. Magn. Magn. Mater. 476, 423 (2019).

    Article  ADS  Google Scholar 

  30. A. V. Sadovnikov, C. S. Davies, S. V. Grishin, V. V. Kruglyak, D. V. Romanenko, Yu. P. Sharaevskii, and S. A. Nikitov, Appl. Phys. Lett. 106, 192406 (2015).

    Article  ADS  Google Scholar 

  31. F. R. Morgenthaler, J. Appl. Phys. 53, 2652 (1982).

    Article  ADS  Google Scholar 

  32. A. V. Sadovnikov, S. A. Nikitov, E. N. Beginin, S.  E.  Sheshukova, Yu. P. Sharaevskii, A. I. Stognij, N. N. Novitski, and Yu. V. Khivintsev, Phys. Rev. 99, 054424 (2019).

    Article  Google Scholar 

  33. S. A. Odintsov, A. V. Sadovnikov, A. A. Grachev, E. N. Beginin, Yu. P. Sharaevskii, and S. A. Nikitov, JETP Lett. 104, 563 (2016).

    Article  ADS  Google Scholar 

  34. S. A. Odintsov and A. V. Sadovnikov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 25 (5), 56 (2017).

    Google Scholar 

  35. A. V. Sadovnikov, S. A. Odintsov, E. N. Beginin, S. E. Sheshukova, Yu. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. B 96, 144428 (2017).

    Article  ADS  Google Scholar 

  36. S. A. Odintsov and A. V. Sadovnikov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 26 (6), 59 (2018).

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 18-79-00198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Martyshkin.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martyshkin, A.A., Sadovnikov, A.V., Beginin, E.N. et al. Functional Magnon Network Blocks Based on Structures with Translational Symmetry Violation. Tech. Phys. 64, 1615–1621 (2019). https://doi.org/10.1134/S1063784219110197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219110197

Navigation