Skip to main content
Log in

Formation of Graphene on Polycrystalline Nickel

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The results of studying the formation of graphene layers during thermal pyrolysis of methane on the surface of polycrystalline nickel are presented. The studies have been carried out using a technique that allows controlling the change in the surface topology with high spatial resolution using a scanning tunneling microscope located directly in the reaction chamber providing no contact between the formed graphene with air. The measurements have revealed the formation of graphene layers in the form of a set of nanobubbles with characteristic sizes of about 100 nm. It has been found that the local topology of the graphene layer can change under the influence of a tunneling microscope probe depending on the applied voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. V. I. Kleshch, D. A. Bandurin, A. S. Orekhov, S. T. Purcell, and A. N. Obraztsov, Appl. Surf. Sci. 357, 1967 (2015).

    Article  ADS  Google Scholar 

  2. L. Arnoldi, M. Spies, J. Houard, I. Blum, A. Etienne, R. Ismagilov, and A. Obraztsov, Appl. Phys. Lett. 112, 143104 (2018).

    Article  ADS  Google Scholar 

  3. V. Calado, S.-E. Zhu, S. Goswami, Q. Xu, K. Watanabe, T. Taniguchi, G. C. A. M. Janssen, and L. M. K. Vandersypen, Appl. Phys. Lett. 104, 023103 (2014).

    Article  ADS  Google Scholar 

  4. V. I. Konov, Carbon Photonics (Nauka, Moscow, 2017).

    Google Scholar 

  5. K. E. Spear and J. P. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology (Wiley, 1994).

    Google Scholar 

  6. A. G. Nasibulin, L. Sun, S. Hämäläinen, S. D. Shandakov, F. Banhart, and E. I. Kauppinen, Cryst. Growth Des. 10, 414 (2009).

    Article  Google Scholar 

  7. R. R. Ismagilov, A. A. Zolotukhin, P. V. Shvets, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 7, 90 (2012).

    Google Scholar 

  8. Y. Yang, K. Brenner, and R. Murali, Carbon 50, 1727 (2012).

    Article  Google Scholar 

  9. N. Reckinger, A. Felten, C. N. Santos, B. Hackens, and J.-F. Colomer, Carbon 63, 84 (2013).

    Article  Google Scholar 

  10. A. N. Obraztsov, Nat. Nanotechnol. 4, 212 (2009).

    Article  ADS  Google Scholar 

  11. A. V. Tyurnina, R. R. Ismagilov, A. V. Chuvilin, and A. N. Obraztsov, Phys. Status Solidi B 247, 3010 (2010).

    Article  ADS  Google Scholar 

  12. R. R. Ismagilov, P. V. Shvets, A. A. Zolotukhin, and A. N. Obraztsov, Chem. Vap. Deposition 19, 332 (2013).

    Article  Google Scholar 

  13. A. Jorio, M. S. Dresselhaus, R. Saito, and G. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (Wiley, 2011).

    Book  Google Scholar 

  14. A. N. Obraztsov, A. V. Tyurnina, E. A. Obraztsova, A. A. Zolotukhin, B. Liu, K.-C. Chin, and A. T. S. Wee, Carbon 46, 963 (2008).

    Article  Google Scholar 

  15. H. Hiura, H. Miyazaki, and K. Tsukagoshi, Appl. Phys. Express 3, 095101 (2010).

    Article  ADS  Google Scholar 

  16. W. R. Smythe, Static and Dynamic Electricity (London, 1939).

    MATH  Google Scholar 

  17. J. Lu, A. H. C. Neto, and K. P. Loh, Nat. Commun. 3, 823 (2012).

    Article  ADS  Google Scholar 

  18. T. Filk and J. Honerkamp, Statistical Physics: An Advanced Approach with Applications (Springer, 2013).

    Google Scholar 

  19. I. Lee, D. J. Bae, W. K. Lee, C.-M. Yang, S. W. Cho, J. Nam, D. Y. Lee, A. Jang, H. S. Shin, J. Y. Hwang, S. Hong, and K. S. Kim, Carbon 145, 462 (2019).

    Article  Google Scholar 

  20. J. Jeon, S. K. Jang, S. M. Jeon, G. Yoo, Y. H. Jang, J.-H. Park, and S. Lee, Nanoscale 7, 1688 (2015).

    Article  ADS  Google Scholar 

  21. A. V. Tyurnina, D. A. Bandurin, E. Khestanova, V. G. Kravets, M. Koperski, F. Guinea, A. N. Grigorenko, A. K. Geim, and I. V. Grigorieva, ACS Photonics 6, 516 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Equipment from the Training Center of Lithography and Microscopy, Moscow State University was used.

Funding

This work was financially supported by the Russian Science Foundation (grant no. 17-72-10173) and the Russian Foundation for Basic Research (grant no. 18-02-01103_A; Raman spectroscopic studies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Loginov.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loginov, A.B., Bozhev, I.V., Bokova-Sirosh, S.N. et al. Formation of Graphene on Polycrystalline Nickel. Tech. Phys. 64, 1666–1672 (2019). https://doi.org/10.1134/S1063784219110185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219110185

Navigation