Skip to main content
Log in

Controlling the Properties of Spin–Wave Transport in a Semiring Magnon Microwavevguide

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Spin-wave transport along a waveguide structure with disturbed translational symmetry has been investigated. A semiring portion of a magnon microwaveguide has been made of a YIG film. It has been shown that one can control the dynamic magnetization spatial distribution by varying the magnetic biasing angle in the microwaveguide plane. Under such conditions, the transmission coefficient of standing waves changes noticeably. The structure suggested in this paper allows the rotation of spin-wave signals in an irregular configuration under the conditions of surface magnetostatic wave propagation. This effect may be used in planar magnon networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J. Phys. D 43, 264001 (2010).

    Article  ADS  Google Scholar 

  2. V. E. Demidov, S. Urazhdin, A. Zholud, A. V. Sadovnikov, A. N. Slavin, and S. O. Demokritov, Sci. Rep. 5, 8578 (2015).

    Article  ADS  Google Scholar 

  3. V. E. Demidov, S. Urazhdin, G. De Loubens, O. Klein, V. Cros, A. Anane, and S. O. Demokritov, Phys. Rep. 673, 1 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. V. Sadovnikov, A. A. Grachev, S. E. Sheshukova, Yu. P. Sharaevskii, A. A. Serdobintsev, D. M. Mitin, and S. A. Nikitov, Phys. Rev. Lett. 120, 257203 (2018).

    Article  ADS  Google Scholar 

  5. R. W. Damon and J. R. Eshbach, J. Phys. Chem. Solids 19, 308 (1961).

    Article  ADS  Google Scholar 

  6. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (CRC, 1996).

    Google Scholar 

  7. D. D. Stancil and A. Prabhakar, Spin Waves: Theory and Applications (Springer, New York, 2009).

    MATH  Google Scholar 

  8. M. S. Sodha and N. C. Srivastava, Microwave Propagation in Ferrimagnetics (Springer, New York, 1981).

    Book  Google Scholar 

  9. A. V. Vashkovskii, V. S. Stal’makhov, and Yu. P. Sharaevskii, Magnetostatic Waves in Microwave Electronics (Sarat. Gos. Univ., Saratov, 1993).

    Google Scholar 

  10. S. Chikazumi, Physics of Ferromagnetism, 2nd ed. (Oxford Univ. Press, 1997).

    Google Scholar 

  11. P. Clausen, K. Vogt, H. Schultheiss, S. Schäfer, and B. Obry, Appl. Phys. Lett. 99, 162505 (2011).

    Article  ADS  Google Scholar 

  12. A. V. Sadovnikov, C. S. Davies, V. V. Kruglyak, D.  V.  Romanenko, S. V. Grishin, E. N. Beginin, Y. P. Sharaevskii, and S. A. Nikitov, Phys. Rev. B 96, 60401 (2017).

    Article  ADS  Google Scholar 

  13. T. Brächer, P. Pirro, J. Westermann, T. Sebastian, B. Lagel, B. Van de Wiele, A. Vansteenkiste, and B. Hillebrands, Appl. Phys. Lett. 102, 132411 (2013).

    Article  ADS  Google Scholar 

  14. S. Demokritov, Spin Wave Confinement: Propagating Waves, 2nd ed. (Jenny Stanford, 2017).

    Book  Google Scholar 

  15. S. A. Nikitov, D. V. Kalyabin, I. V. Lisenkov, A. N. Slavin, Yu. N. Barabanenkov, S. A. Osokin, A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevsky, Yu. A. Filimonov, Yu. V. Khivintsev, S. L. Vysotsky, V. K. Sakharov, and E. S. Pavlov, Phys.-Usp. 58, 1002 (2015).

    Article  Google Scholar 

  16. Yu. V. Gulyaev and S. A. Nikitov, Dokl. Phys. 46, 687 (2001).

    Article  ADS  Google Scholar 

  17. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999), p. 457.

    Google Scholar 

  18. A. V. Sadovnikov, A. A. Grachev, S. A. Odintsov, A. A. Martyshkin, V. A. Gubanov, S. E. Sheshukova, and S. A. Nikitov, JETP Lett. 108, 312 (2018).

    Article  ADS  Google Scholar 

  19. A. V. Sadovnikov, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, S. V. Grishin, S. E. Sheshukova, and S. A. Nikitov, App. Phys. Lett. 109, 042407 (2016).

    Article  ADS  Google Scholar 

  20. M. A. Morozova, O. V. Matveev, and Yu. P. Sharaevskii, Phys. Solid State 58, 1967 (2016).

    Article  ADS  Google Scholar 

  21. M. Dvornik, Y. Au, and V. V. Kruglyak, in Magnonics: From Fundamentals to Applications, Ed. by S. O. Demokritov and A. N. Slavin (Springer, 2013), p. 101.

    Google Scholar 

  22. M. Remouche, F. Georges, and P. Meyrueis, Opt. Photonics J. 2, 1 (2012).

    Article  Google Scholar 

  23. Y. Gaididei, V. P. Kravchuk, F. G. Mertens, O. V. Pylypovskyi, A. Saxena, D. D. Sheka, and O. M. Volkov, Low Temp. Phys. 44, 634 (2018).

    Article  ADS  Google Scholar 

  24. V. S. Tkachenko, A. N. Kuchko, and V. V. Kruglyak, Low Temp. Phys. 39, 163 (2013).

    Article  ADS  Google Scholar 

  25. S. Bance, T. Schrefl, G. Hrkac, A. Goncharov, D. A. Allwood, and J. Dean, J. Appl. Phys. 103, 07E735 (2008).

  26. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1982).

    Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).

    Google Scholar 

  28. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv. 4, 107133 (2014).

    Article  ADS  Google Scholar 

  29. V. E. Demidov, S. Urazhdin, A. Zholud, A. V. Sadovnikov, and S. O. Demokritov, Appl. Phys. Lett. 106, 022403 (2015).

    Article  ADS  Google Scholar 

  30. S. O. Demokritov, B. Hillebrand, and A. N. Slasvin, Phys. Rep. 348, 441 (2001).

    Article  ADS  Google Scholar 

  31. A. V. Sadovnikov, C. S. Davies, S. V. Grishin, V. Kruglyak, D. V. Romanenko, Yu. P. Sharaevskii, and S. A. Nikitov, Appl. Phys. Lett. 106, 192406 (2015).

    Article  ADS  Google Scholar 

  32. A. V. Sadovnikov, S. A. Odintsov, E. N. Beginin, S. E. Sheshukova, S. A. Nikitov, Phys. Rev. B 96, 144428 (2017).

    Article  ADS  Google Scholar 

  33. T. W. O’Keefe and R. W. Patterson, J. Appl. Phys. 49, 4886 (1978).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 18-79-00198), Russian Foundation for Basic Research (grant no. 18-37-20005), and grant no. MK 3650.2018.9 of the President of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gubanov.

Ethics declarations

The authors claim that they do not have any conflicts of interest.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubanov, V.A., Martyshkin, A.A., Sheshukova, S.E. et al. Controlling the Properties of Spin–Wave Transport in a Semiring Magnon Microwavevguide. Tech. Phys. 64, 1636–1641 (2019). https://doi.org/10.1134/S1063784219110136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219110136

Navigation