Skip to main content
Log in

Application of Scanning Capacitance Force Microscopy for Detecting Impurity Phases in Ferroelectric Triglycine Sulfate

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An inhomogeneous ferroelectric (triglycine-sulfate (TGS) single crystal with a TGS–TGS+Cr periodic growth impurity structure) has been investigated by scanning capacitance force microscopy (SCFM). The specific features of mapping capacitance variations when detecting the electrostatic force at double and triple resonance frequencies are considered. The piezoelectric response, surface potential, and surface topography have been measured. It is shown that the capacitance contrast is formed both on domain walls and on TGS and TGS+Cr stripes. It is demonstrated that SCFM at the electrostatic-force double resonance frequency makes it possible to observe the spatial impurity distribution in the ferroelectric structure in the range of Cr concentrations of about 0.02–0.08 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Š. Lányi, in Applied Scanning Probe Methods VIII: Scanning Probe Microscopy Techniques, Ed. by B. Bhushan, H. Fuchs, and M. Tomitori (Springer, 2008), p. 377. https://doi.org/10.1007/978-3-540-74080-3_11

  2. R. A. Oliver, Rep. Prog. Phys. 71, 076501 (2008). https://doi.org/10.1088/0034-4885/71/7/076501

    Article  ADS  Google Scholar 

  3. C. C. Williams, J. Slinkman, W. P. Hough, and H. K. Wickramasinghe, Appl. Phys. Lett. 55, 1662 (1989).

    Article  ADS  Google Scholar 

  4. J. J. Kopanski, in Scanning Probe Microscopy, Ed. by S. Kalinin and A. Gruverman (Springer, New York, 2007), pp. 88–112. https://doi.org/10.1007/978-0-387-28668-6_4

  5. K. L. Sorokina and A. L. Tolstikhina, Crystallogr. Rep. 49, 476 (2004).

    Article  ADS  Google Scholar 

  6. C. Y. Nakakura, P. Tangyunyong, and M. L. Anderson, in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Ed. by S. V. Kalinin and A. Gruverman (Springer, New York, 2007), p. 634. https://doi.org/10.1007/978-0-387-28668-6_24

    Google Scholar 

  7. A. Szyszka, M. Oblak, T. Szymanski, M. Wosko, W. Dawidowski, and R. Paszkiewicz, Mater. Sci.-Pol. 34 (4), 84 (2016). https://doi.org/10.1515/msp-2016-0104

    Article  Google Scholar 

  8. D. T. Lee, J. P. Pelz, and B. Bhushan, Nanotechnology 17, 1484 (2006). https://doi.org/10.1088/0957-4484/17/5/054

    Article  ADS  Google Scholar 

  9. W. Brezna, S. Harasek, E. Bertagnolli, E. Gornik, J. Smoliner, and H. Enichlmair, J. Appl. Phys. 92, 2144 (2002). https://doi.org/10.1063/1.1495075

    Article  ADS  Google Scholar 

  10. M. Rommel, V. Yanev, A. Paskaleva, T. Erlbacher, M. Lemberger, A. J. Bauer, and L. Frey, ECS Trans. 28, 139 (2010).

    Article  Google Scholar 

  11. V. Yanev, M. Rommel, and A. J. Bauer, J. Vac. Sci. Technol. B 29, 01A401 (2011). https://doi.org/10.1116/1.3532822

    Article  Google Scholar 

  12. Y. Naitou and A. Ando, Appl. Phys. Lett. 87, 252908 (2005). https://doi.org/10.1063/1.2149222

    Article  ADS  Google Scholar 

  13. Y. Naitou and H. Ogiso, Jpn. J. Appl. Phys. 45, 1922 (2006). https://doi.org/10.1143/JJAP.45.1922

    Article  ADS  Google Scholar 

  14. L. Fumagalli, G. Ferrari, M. Sampietro, and G. Gomila, Appl. Phys. Lett. 91, 243110 (2007). https://doi.org/10.1063/1.2821119

    Article  ADS  Google Scholar 

  15. G. Gomila, J. Toset, and L. Fumagalli, J. Appl. Phys. 104, 024315 (2008). https://doi.org/10.1063/1.2957069

    Article  ADS  Google Scholar 

  16. L. Fumagalli, G. Ferrari, M. Sampietro, I. Casuso, E. Martinez, J. Samitier, and G. Gomila, Nanotechnology 17, 4581 (2006). https://doi.org/10.1088/0957-4484/17/18/009

    Article  ADS  Google Scholar 

  17. L. Fumagalli, G. Ferrari, M. Sampietro, and G. Gomila, Nano Lett. 9, 1604 (2009).

    Article  ADS  Google Scholar 

  18. L. Fumagalli, D. Esteban-Ferrer, A. Cuervo, J. L. Carrascosa, and G. Gomila, Nat. Mater. 11, 808 (2012). https://doi.org/10.1038/NMAT3369

    Article  ADS  Google Scholar 

  19. B. Kumar, J. C. Bonvallet, and S. R. Crittenden, Nanotechnology 23, 025707 (2012). https://doi.org/10.1088/0957-4484/23/2/025707

    Article  ADS  Google Scholar 

  20. R. I. Revilla, X.-J. Li, Y.-L. Yang, and Ch. Wang, J. Phys. Chem. C 118, 5556 (2014). https://doi.org/10.1021/jp411951h

    Article  Google Scholar 

  21. Ch.-Ch. Leu, Ch.-H. Chien, Ch.-Y. Chen, M.-N. Chang, F.-Yi. Hsu, and Ch.-T. Hu, Electrochem. Solid-State Lett. 7, A327 (2004). https://doi.org/10.11499/1.17899811

    Article  Google Scholar 

  22. Ch.-Ch. Leu, Ch.-Y. Chen, Ch.-H. Chien, M.-N. Chang, F.-Y. Hsu, and Ch.-T. Hu, Appl. Phys. Lett. 82, 3493 (2003). https://doi.org/10.1063/1.1576308

    Article  ADS  Google Scholar 

  23. V. V. Polyakov, Nauchn. Priborostr.1 (3), 62 (2009).

    Google Scholar 

  24. P. Girard, Nanotechnology 12, 485 (2001). https://doi.org/10.1088/0957-4484/12/4/321

    Article  ADS  Google Scholar 

  25. K. Kimura, K. Kobayashi, H. Yamada, and K. Matsushige, Appl. Surf. Sci. 210, 93 (2003). https://doi.org/10.1016/S0169-4332(02)01486-1

    Article  ADS  Google Scholar 

  26. K. Kobayashi, H. Yamada, and K. Matsushige, Appl. Phys. Lett. 81, 2629 (2002). https://doi.org/10.1063/1.1510582

    Article  ADS  Google Scholar 

  27. V. A. Bykov, V. V. Losev, and S. A. Saunin, Proc. All-Russian Meeting “Probe Microscopy,” Nizhny Novgorod, Russia,1999, p. 135. https://www.ntmdt-si.ru/data/media/files/publications/1999/03.10_v.a._bykov_v.v._los_russian.pdf.

  28. E. I. Rau and A. M. Tagachenkov, Bull. Russ. Acad. Sci.: Phys. 77, 943 (2013). https://doi.org/10.3103/S1062873813080352

    Article  Google Scholar 

  29. V. N. Shut, I. F. Kashevich, and B. E. Watts, Crystallogr. Rep. 49, 206 (2004).

    Article  ADS  Google Scholar 

  30. S. Magonov and J. Alexander, Beilstein J. Nanotechnol. 2, 15 (2011). https://doi.org/10.3762/bjnano.2.2

    Article  Google Scholar 

  31. N. V. Belugina, R. V. Gainutdinov, A. L. Tolstikhina, E. S. Ivanova, I. F. Kashevich, V. N. Shut, and S. E. Mozzharov, Crystallogr. Rep. 60, 555 (2015). https://doi.org/10.1134/S1063774515040082

    Article  ADS  Google Scholar 

  32. V. V. Zavyalov, J. S. McMurray, and C. C. Williams, J. Vac. Sci. Technol. B 18, 1125 (2000). https://doi.org/10.1116/1.591476

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experiments were carried out using equipment of the Shared Research Center, Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within the State assignment for the Federal Scientific Research Centre Crystallography and Photonics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Tolstikhina.

Ethics declarations

The authors declare that they do not have any conflicts of interest.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainutdinov, R.V., Tolstikhina, A.L., Lashkova, A.K. et al. Application of Scanning Capacitance Force Microscopy for Detecting Impurity Phases in Ferroelectric Triglycine Sulfate. Tech. Phys. 64, 1602–1608 (2019). https://doi.org/10.1134/S1063784219110094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219110094

Navigation