Skip to main content
Log in

Simulation of Motion of H2 and D2 Molecules in Sextupole Magnets

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We simulate the motion of hydrogen and deuterium molecules in the magnetic system of a setup intended for obtaining nuclear-spin-polarized molecules. Spatial separation of molecules with different magnetic moment projections by the spin filtration method in a nonuniform magnetic field is performed using superconducting sextupole magnets. Calculations are carried out for a magnetic field induction of 3.7 T at the poles and a nozzle temperature of 7 K. Simulation show that the ratio of polarized flux of hydrogen molecules to the detector to the total flux from the source nozzle is 2.3 × 10–6, nuclear polarization being close to 100%. Calculations performed for deuterium reveal that this ratio is 7 times smaller due to the smallness of the magnetic moment relative to hydrogen molecules. Trajectories of molecules in the magnetic system and their spatial distribution are represented graphically. Mathematical aspects of the algorithm of the computer program developed for this purpose are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Nuclear Fusion with Polarized Fuel, Ed. by G. Ciullo, R. Engels, M. Büscher, and A. Vasilyev (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-39471-8_1

    Google Scholar 

  2. Ch. Leemann, H. Bürgisser, P. Huber, U. Rohrer, H. Paetz gen. Schieck, and F. Seiler, Helv. Phys. Acta 44, 141 (1971). https://doi.org/10.5169/seals-114273

    Google Scholar 

  3. E. Steffens and W. Haeberli, Rep. Prog. Phys. 66, 1887 (2003). https://doi.org/10.1088/0034-4885/66/11/R02

    Article  ADS  Google Scholar 

  4. D. K. Toporkov, Proc. XV Int. Workshop on Polarized Sources, Targets, and Polarimetry, Charlottesville, United States, 2013, p. 064.

  5. Yu. V. Shestakov, D. M. Nikolenko, I. A. Rachek, D. K. Toporkov, and V. F. Dmitriev, Proc. 13th Int. Symp. on High Energy Spin Physics, Protvino, Russia, 1998, p. 415.

  6. D. K. Toporkov, A. V. Gramolin, D. M. Nikolenko, I. A. Rachek, R. Sh. Sadykov, Yu. V. Shestakov, and S. A. Zevakov, JETP Lett. 1050, 289 (2017). https://doi.org/10.1134/S0021364017050125

    Article  ADS  Google Scholar 

  7. M. V. Dyug, B. A. Lazarenko, S. I. Mishnev, D. M. Nikolenko, I. A. Rachek, R. Sh. Sadykov, D. K. Toporkov, S. A. Zevakov, A. V. Osipov, and V. N. Stibunov, Nucl. Instrum. Methods Phys. Res., Sect. A 495, 8 (2002). https://doi.org/10.1016/S0168-9002(02)01572-3

    Google Scholar 

  8. D. K. Toporkov, S. A. Zevakov, D. M. Nikolenko, I. A. Rachek, Yu. V. Shestakov, and A. V. Yurchenko, Instrum. Exp. Tech. 62, 56 (2019). https://doi.org/10.1134/S0020441219010184

    Article  Google Scholar 

  9. D. K. Toporkov, A. V. Gramolin, D. M. Nikolenko, I. A. Rachek, R. Sh. Sadykov, Yu. V. Shestakov, A. V. Yurchenko, and S. A. Zevakov, Nucl. Instrum. Methods Phys. Res., Sect. A 868, 15 (2017). https://doi.org/10.1016/j.nima.2017.06.038

    Google Scholar 

  10. Yu. V. Shestakov, D. M. Nikolenko, I. A. Rachek, R. Sh. Sadykov, D. K. Toporkov, A. V. Yurchenko, and S. A. Zevakov, J. Phys.: Conf. Ser. 938, 012035 (2017). https://doi.org/10.1088/1742-6596/938/1/012035

    Google Scholar 

  11. R. Engels, M. Gaißer, R. Gorski, K. Grigoryev, M. Mikirtychyants, A. Nass, F. Rathmann, H. Seyfarth, H. Ströher, P. Weiss, L. Kochenda, P. Kravtsov, V. Trofimov, N. Tschernov, A. Vasilyev, et al., Phys. Rev. Lett. 115, 113007 (2015). https://doi.org/10.1103/PhysRevLett.115.113007

    Article  ADS  Google Scholar 

  12. R. Frisch and O. Stern, Z. Phys. 85, 4 (1933). https://doi.org/10.1007/BF01330773

    Article  ADS  Google Scholar 

  13. N. F. Ramsey, Phys. Rev. 85, 60 (1952). https://doi.org/10.1103/PhysRev.85.60

    Article  ADS  Google Scholar 

  14. L. G. Isaeva, B. A. Lazarenko, S. I. Mishnev, D. M. Nikolenko, S. G. Popov, I. A. Rachek, Yu. V. Shestakov, D. K. Toporkov, D. K. Vesnovsky, and S. A. Zevakov, Nucl. Instrum. Methods Phys. Res., Sect. A 411, 201 (1998). https://doi.org/10.1016/S0168-9002(98)00352-0

    Google Scholar 

  15. A. V. Yurchenko, D. M. Nikolenko, I. A. Rachek, Yu. V. Shestakov, D. K. Toporkov, and A. V. Zorin, J. Phys.: Conf. Ser. 938, 012023 (2017). https://doi.org/10.1088/1742-6596/938/1/012023

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.M. Rudnev and R.Sh. Sadykov for their maintenance of the setup for the production of polarized hydrogen and deuterium molecules.

The planned experiment on measuring the nuclear polarization of molecules will be performed with the participation of R. Engels, M. Buscher, and L. Huxold.

Funding

This study was supported by the Russian Science Foundation (project no. 16-42-01009) together with the German Research Society (DFG) (project no. BU 2227/1-1).

Author information

Authors and Affiliations

Authors

Contributions

The Monte Carlo computer program was developed and composed by A.V. Yurchenko. All coauthors participated in discussion of the results of simulation and made a significant contribution to analysis and interpretation of results and to the critical review of the manuscript.

Corresponding author

Correspondence to A. V. Yurchenko.

Ethics declarations

The authors claim that they have no conflicts of interest.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurchenko, A.V., Nikolenko, D.M., Rachek, I.A. et al. Simulation of Motion of H2 and D2 Molecules in Sextupole Magnets. Tech. Phys. 64, 1248–1259 (2019). https://doi.org/10.1134/S1063784219090226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219090226

Keywords:

Navigation