Technical Physics

, Volume 64, Issue 8, pp 1133–1139 | Cite as

Study of Evaporation of Laser-Heated Iron–Carbon Nanoparticles Using Analysis of Thermal Radiation

  • E. V. GurentsovEmail author
  • A. V. Eremin
  • S. A. Musikhin


Evaporation of iron nanoparticles in carbon shells under pulsed laser irradiation is analyzed. Iron–carbon nanoparticles are synthesized in a shock tube reactor with the aid of pyrolysis of the 0.25% Fe(CO)5 + 0.25% C6H6 mixture in argon. Laser radiation is used for additional heating to temperatures that exceed the evaporation threshold of the iron core of nanoparticles. Time profiles of the thermal radiation of laser-heated nanoparticles are measured. The two-color pyrometry is used to determine the evaporation temperature of nanoparticles, and the laser extinction makes it possible to monitor the loss of volume fraction of the condensed phase upon evaporation. Approximation of experimental signals of laser-heated nanoparticles using model curves is employed to determine effective enthalpy of evaporation of iron–carbon nanoparticles. It is shown that the iron core of nanoparticles is evaporated through the carbon shell and the energy spent by such a process is approximately twice greater than the evaporation enthalpy of bulk iron with free surface.



This work was supported by the Russian Foundation for Basic Research (project no. 14-08-00505).


The authors declare that there is no conflict of interest.


  1. 1.
    S. Taketomi and S. Tikazumi, Magnetic Fluids (Nikkan Kogyo Shinbunsha, Tokyo, 1988).Google Scholar
  2. 2.
    D. L. Huber, Small 5, 482 (2005).CrossRefGoogle Scholar
  3. 3.
    J. M. Perez, L. Josephson, and R. Weissleder, ChemBioChem 5, 261 (2004).CrossRefGoogle Scholar
  4. 4.
    A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005).CrossRefGoogle Scholar
  5. 5.
    C. Li, Nat. Mater. 13, 110 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    S. Zanganeh, G. Hutter, R. Spitler, O. Lenkov, M. Mahmoudi, A. Shaw, J. S. Pajarinen, H. Nejadnik, S. Goodman, M. Moseley, L. M. Coussens, and H.  E.  Daldrup-Link, Nat. Nanotechnol. 11, 986 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    J. H. J. Scott and S. A. Majetich, Phys. Rev. B 52, 12564 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    X. L. Dong, Z. D. Zhang, Q. F. Xiao, X. G. Zhao, Y.  C.  Chuang, S. R. Jin, W. M. Sun, Z. J. Li, Z. X. Zheng, and H. Yang, J. Mater. Sci. 33, 1915 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    H. Zhang, J. Phys. Chem. Solids 60, 1845 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Xia, B. Gates, Y. Yin, and Y. Lu, Adv. Mater. 12, 693 (2000).CrossRefGoogle Scholar
  11. 11.
    G. Yang, S. Teague, K. Pinkerton, and I. M. Kennedy, Aerosol Sci. Technol. 35, 759 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    K. Elihn, L. Landström, and P. Heszler, Appl. Surf. Sci. 186, 573 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    P. Z. Si, Z. D. Zhang, D. Y. Geng, C. Y. You, X. G. Zhao, and W. S. Zhang, Carbon 41, 247 (2003).CrossRefGoogle Scholar
  14. 14.
    Z. H. Wang, Z. D. Zhang, C. J. Choi, and B. K. Kim, J. Alloys Compd. 361, 289 (2003).CrossRefGoogle Scholar
  15. 15.
    B. David, N. Pizúrová, O. Schneeweiss, P. Bezdička, I. Morjan, and R. Alexandrescu, J. Alloys Compd. 378, 112 (2004).CrossRefGoogle Scholar
  16. 16.
    L. Landström, K. Elihn, M. Boman, C. G. Granqvist, and P. Heszler, Appl. Phys. A 81, 827 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    L. Diaz, M. Santos, C. Ballesteros, M. Maryčko, and J. Pola, J. Mater. Chem. 15, 4311 (2005).CrossRefGoogle Scholar
  18. 18.
    C. Jager, H. Mutschke, F. Huisken, R. Alexandrescu, I. Morjan, F. Dumitrache, R. Barjega, I. Soare, B. David, and O. Schneeweiss, Appl. Phys. A 85, 53 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    L. Ning, L. Xiaojie, W. Xiaohong, Y. Honghao, Z. Chengjiao, and W. Haitao, Carbon 48, 3858 (2010).CrossRefGoogle Scholar
  20. 20.
    E. V. Gurentsov and A. V. Eremin, Tech. Phys. Lett. 41, 547 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    A. V. Eremin, E. V. Gurentsov, and S. A. Musikhin, J. Phys.: Conf. Ser. 774, 012127 (2016).Google Scholar
  22. 22.
    A. V. Eremin, E. V. Gurentsov, and S. A. Musikhin, Mater. Res. Express 3, 105041 (2016).ADSCrossRefGoogle Scholar
  23. 23.
    E. V. Gurentsov, Kinet. Catal. 58, 233 (2017).CrossRefGoogle Scholar
  24. 24.
    U. S. Akhmadov, I. S. Zaslonko, and V. N. Smirnov, Khim. Fiz. 8, 1400 (1989).Google Scholar
  25. 25.
    R. Starke, B. Kock, and P. Roth, Shock Waves 12, 351 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Springer, New York, 1963).Google Scholar
  27. 27.
    D. Snelling, F. Liu, G. Smallwood, and Ö. Gülder, Combust. Flame 136, 180 (2004).CrossRefGoogle Scholar
  28. 28.
    A. V. Eremin, Prog. Energy Combust. Sci. 38, 1 (2012).CrossRefGoogle Scholar
  29. 29.
    D. R. Snelling, G. J. Smallwood, F. Liu, Ö. L. Gülder, and W. D. Bachalo, Appl. Opt. 44, 6773 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    A. Eremin, E. Gurentsov, E. Mikheyeva, and K. Priemchenko, Appl. Phys. B 112, 421 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    A. Eremin, E. Gurentsov, E. Popova, and K. Priemchenko, Appl. Phys. B 104, 285 (2011).ADSCrossRefGoogle Scholar
  32. 32.
    T. A. Sipkens, N. R. Singh, and K. J. Daun, Appl. Phys. B 123, 14 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1991), p. 588.Google Scholar
  34. 34.
    K. K. Nanda, Appl. Phys. Lett. 87, 021909 (2005).ADSCrossRefGoogle Scholar
  35. 35.
    G. L. Agafonov, V. N. Smirnov, and P. A. Vlasov, Combust. Sci. Technol. 184, 1838 (2012).CrossRefGoogle Scholar
  36. 36.
    E. V. Gurentsov, A. V. Eremin, E. Yu. Mikheeva, and S. A. Musikhin, High Temp. 54, 896 (2016).CrossRefGoogle Scholar
  37. 37.
    E. V. Gurentsov and A. V. Eremin, High Temp. 49, 667 (2011).CrossRefGoogle Scholar
  38. 38.
    A. V. Eremin, E. V. Gurentsov, M. Hofmann, B. Kock, and Ch. Schulz, Appl. Phys. B 83, 449 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Gurentsov
    • 1
    Email author
  • A. V. Eremin
    • 1
  • S. A. Musikhin
    • 1
  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia

Personalised recommendations