Skip to main content
Log in

Influence of Current Annealing on the Temperature Dependences of Magnetoimpedance in Amorphous Microwires

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Further miniaturization of magnetic electron devices and devices of microsystem engineering in many ways depends on the optimal choice of functional materials (media) used in working bodies, specifically, sensory elements (for example, in local magnetic field sensors, mechanical stress/strain sensors, temperature sensors, etc.). Among promising materials in this respect are ferromagnetic wires consisting of a glass-coated amorphous alloy filament. The magnetoimpedance of such filaments turns out to be highly sensitive to the above external factors: the so-called giant magnetoimpedance effect. The performance of these devices is highly temperature stable, which is important for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. M. Vazquez, H. Chiriac, A. Zhukov, L. Panina, and T. Uchiyama, Phys. Status Solidi A 208, 493 (2011).

    Article  ADS  Google Scholar 

  2. F. Qin and H.-X. Peng, Prog. Mater. Sci. 58, 183 (2013).

    Article  Google Scholar 

  3. L. Panina and K. Mohri, Appl. Phys. Lett. 65, 1189 (1994).

    Article  ADS  Google Scholar 

  4. K. Mandal, S. Puerta, M. Vazquez, and A. Hernando, IEEE Trans. Magn. 36, 3257 (2002).

    Article  ADS  Google Scholar 

  5. V. V. Popov, V. N. Berzhansky, H. V. Gomonay, and F. X. Qin, J. Appl. Phys. 113, 326 (2013).

    Article  Google Scholar 

  6. D. Makhnovskiy, V. Zamorovski, and J. Summerscales, Compos. A 61, 216 (2014).

    Article  Google Scholar 

  7. P. Ripka and A. Tipek, Modern Sensors Handbook (Wiley-ISTE, 2007).

    Book  Google Scholar 

  8. A. Grosz, M. J. Haji-Sheikh, and S. C. Mukhopadhyay, High Sensitivity Magnetometers (Springer, Cham, 2017).

    Book  Google Scholar 

  9. L. Kraus, M. Knobel, S. N. Kane, and H. Chiriac, J. Appl. Phys. 85, 5435 (1999).

    Article  ADS  Google Scholar 

  10. J. Liu, F. Qin, D. Chen, H. Shen, H. Wang, D. Xing, M.-H. Phan, and J. Sun, J. Appl. Phys. 115, 326 (2014).

    Google Scholar 

  11. V. Zhukova, A. Talaat, M. Ipatov, and A. Zhukov, IEEE Trans. Magn. 50, 1 (2014).

    Article  Google Scholar 

  12. A. T. Morchenko, L. V. Panina, V. S. Larin, M. N. Churyukanova, M. M. Salem, H. Hashim, A. V. Trukhanov, V. V. Korovushkin, and V. G. Kostishyn, J. Alloys Compd. 698, 685 (2017).

    Article  Google Scholar 

  13. G. N. Elmanov, P. A. Chernavskii, I. V. Kozlov, P.  S.  Dzhumaev, E. V. Kostitsyna, V. P. Tarasov, A. S. Ignatov, and S. A. Gudoshnikov, J. Alloys Compd. 741, 648 (2018).

    Article  Google Scholar 

  14. S. Evstigneeva, A. Morchenko, A. Trukhanov, L.  Panina, V. Larin, N. Volodina, N. Yudanov, M. Nematov, H. Hashim, and H. Ahmad, EPJ Web Conf. 185, 04022 (2018).

    Article  Google Scholar 

  15. A. Zhukov, M. Churyukanova, S. Kaloshkin, V. Semenkova, S. Gudoshnikov, M. Ipatov, A. Talaat, J. M. Blanco, and V. Zhukova, J. Alloys Compd. 651, 718 (2015).

    Article  Google Scholar 

  16. A. V. Popova, V. I. Odintsov, S. A. Menshov, E. V. Kostitsyna, V. P. Tarasov, V. Zhukova, A. Zhukov, and S. A. Gudoshnikov, Intermetallics 99, 39 (2018).

    Article  Google Scholar 

  17. L. Kraus, Z. Frait, K. R. Pirota, and H. Chiriac, J. Magn. Magn. Mater. 25, 399 (2003).

    Article  ADS  Google Scholar 

  18. A. Zhukov, A. Talaat, M. Churyukanova, S. Kaloshkin, V. Semenkova, M. Ipatov, J. M. Blanco, and V. Zhukova, J. Alloys Compd. 664, 235 (2016).

    Article  Google Scholar 

  19. V. Zhukova, M. Ipatov, A. Zhukov, R. Varga, A. Torcunov, J. Gonzalez, and J. M. Blanco, J. Magn. Magn. Mater. 300, 16 (2006).

    Article  ADS  Google Scholar 

  20. B. Tian, L. H. Wang, and L. Y. Zhou, Adv. Mater. Res. 79, 1407 (2009).

    Article  Google Scholar 

  21. A. Amirabadizadeh, R. Mardani, and M. Ghanaatshoar, J. Alloys Compd. 9, 372 (2015).

    Google Scholar 

  22. J. S. Liu, X. D. Wang, D. M. Chen, F. X. Qin, H. Wang, D. W. Xing, X. Xue, and J. F. Sun, Phys. Proc. 48, 140 (2013).

    Article  ADS  Google Scholar 

  23. H. Chiriac and T. A. Ovari, Prog. Mater. Sci 40, 333 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank V. Larin, MFTI Ltd. (http://www.w.microwires.com), for providing microwires.

Funding

This study was financially supported by the Ministry of Education and Science of the Russian Federation as part of a program aimed at improving the competitiveness of the National University of Science and Technology MISiS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dzhumazoda.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhumazoda, A., Panina, L.V., Nematov, M.G. et al. Influence of Current Annealing on the Temperature Dependences of Magnetoimpedance in Amorphous Microwires. Tech. Phys. 64, 990–993 (2019). https://doi.org/10.1134/S1063784219070107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219070107

Navigation