Skip to main content
Log in

Low-Gas Detonation in Low-Density Mechanically Activated Powder Mixtures

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have analyzed experimental data on supersonic self-sustained propagation of an energy-release wave in low-density mechanically activated mixtures. Various mechanisms that can be responsible for this process have been investigated, and the mechanism for detonation-like propagation of reaction in powder mixtures has been proposed. It is shown that under certain conditions, this process possesses all features of detonation and must be treated as a variety of detonation. It is demonstrated that this type of detonation basically differs from classical “ideal” detonation: instead of a shock wave, a compaction wave propagates in a powder mixture, in which powder compaction and not compression of particle material occurs due to mutual displacement of particles. In this case, a chemical reaction is initiated due to mutual friction of oxidizer and fuel particles in the powder compaction wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Yu. B. Khariton, in Explosives Theory Issues (Akad. Nauk SSSR, Leningrad, 1947), Vol. 1, pp. 7–29.

    Google Scholar 

  2. Yu. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, New York, London, 1977).

    Google Scholar 

  3. M. B. Boslough, J. Chem. Phys. 92, 1839 (1990).

    Article  ADS  Google Scholar 

  4. L. S. Bennett and Y. Horie, Shock Waves 4, 127 (1994).

    Article  ADS  Google Scholar 

  5. Yu. A. Gordopolov, V. S. Trofimov, and A. G. Merzhanov, Dokl. Akad. Nauk 341, 327 (1995).

    Google Scholar 

  6. L. G. Bolkhovitinov and S. S. Batsanov, Combust., Explos. Shock Waves 43, 219 (2007).

    Article  Google Scholar 

  7. F.X. Jette and A. J. Higgins, AIP Conf. Proc. 955, 385 (2007).

    ADS  Google Scholar 

  8. A. Yu. Dolgoborodov, M. N. Makhov, A. N. Streletskii, I. V. Kolbanev, M. F. Gogulya, and V. E. Fortov, Khim. Fiz. 23 (9), 85 (2004).

    Google Scholar 

  9. A. Yu. Dolgoborodov, M. N. Makhov, I. V. Kolbanev, A. N. Streletskii, and V. E. Fortov, JETP Lett. 81, 311 (2005).

    Article  ADS  Google Scholar 

  10. A. Yu. Dolgoborodov, M. N. Makhov, I. V. Kolbanev, A. N. Streletskii, and V. E. Fortov, in Proc. 13th Int. Detonation Symp., Norfolk, United States, 2006, pp. 137–144.

  11. A. Yu. Dolgoborodov, A. N. Streletskii, M. N. Makhov, I. V. Kolbanev, and V. E. Fortov, Russ. J. Phys. Chem. B 1, 606 (2007).

    Article  Google Scholar 

  12. A. Yu. Dolgoborodov, A. N. Streletskii, I. V. Kolbanev, and M. N. Makhov, in Proc. 35th Int. Pyrotechnics Seminar, Fort Collins, United States, 2008, pp. 169–173.

  13. A. Yu. Dolgoborodov, A. N. Streletskii, M. N. Makhov, V. A. Teselkin, Sh. L. Guseinov, P. A. Storozhenko, and V. E. Fortov, Russ. J. Phys. Chem. B 6, 523 (2012).

    Article  Google Scholar 

  14. L. R. Gómez, A. M. Turner, M. van Hecke, and V. Vitelli, Phys. Rev. Lett. 108, 058001 (2012).

    Article  ADS  Google Scholar 

  15. S. van den Wildenberg, R. van Loo, and M. van Hecke, Phys. Rev. Lett. 111, 218003 (2013).

    Article  ADS  Google Scholar 

  16. S. A. Rashkovskii and A. Yu. Dolgoborodov, in Combustion and Explosion, Ed. by S. M. Frolov (TORUS PRESS, Moscow, 2014), Vol. 7, pp. 309–313.

    Google Scholar 

  17. S. A. Rashkovskiy and A. Y. Dolgoborodov, Combust. Sci. Technol. 189, 2220 (2017).

    Article  Google Scholar 

  18. S. A. Rashkovskii and A. Yu. Dolgoborodov, Tech. Phys. Lett. 41, 575 (2015).

    Article  ADS  Google Scholar 

  19. H. Leuenberger, Int. J. Pharm. 12, 41 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Rashkovskiy.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashkovskiy, S.A., Dolgoborodov, A.Y. Low-Gas Detonation in Low-Density Mechanically Activated Powder Mixtures. Tech. Phys. 64, 767–775 (2019). https://doi.org/10.1134/S1063784219060173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219060173

Navigation