Skip to main content
Log in

Relationship between Transport Phenomena and Characteristics of the Cluster Structure

  • PHYSICS FOR SCIENCES OF LIFE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Using a statistical approach, we have estimated the size of water clusters and the number of free molecules participating in transport phenomena. The sizes of clusters and the number of molecules in them, as well as the number of free water molecules and their mean free paths, have been determined using experimental data on the temperature dependence of viscosity and density of water. It has been concluded that a temperature of 36.6°C is a special point in the range of 0–100°C. At temperatures higher than this value, the binding energy of a molecule with a cluster decreases abruptly, while the concentration of free molecules sharply increases. Quantitative data have been compared with the parameters of the superplastic state of titanium. As an example, we consider metabolism in functioning of erythrocytes of blood in an adult human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. D. Dankov and A. A. Kochetkov, Dokl. Akad. Nauk SSSR 2, 359 (1934).

    Google Scholar 

  2. G. W. Stewart and M. Roger, Phys. Rev. 30, 232 (1927). https://doi.org/10.1103/PhysRev.30.232

    Article  ADS  Google Scholar 

  3. Ya. I. Frenkel’, Kinetic Theory of Liquids (Akad. Nauk SSSR, Leningrad, Moscow, 1945).

    MATH  Google Scholar 

  4. W. C. Röntgen, Ann. Phys. 281, 91 (1892). https://doi.org/10.1002/andp.18922810108

    Article  Google Scholar 

  5. G. G. Malenkov, J. Struct. Chem. 47, S1 (2006).

    Article  Google Scholar 

  6. V. I. Slesarev, Chemistry. Introduction to Chemistry of the Living World (Khimizdat, St. Petersburg, 2007).

    Google Scholar 

  7. N. P. Sargaeva and P. M. Sargaev, Izv. Ross. Gos. Pedagog. Univ. 7 (26), 112 (2007).

    Google Scholar 

  8. O. V. Mosin, Elektron. Svyaz’, No. 15, 24 (2002).

  9. M. Yu. Tretyakov et al., Phys.-Usp. 57, 1083 (2014).

    Article  Google Scholar 

  10. R. Moro, R. Rabinovich, C. Xia, and V. V. Kresin, Phys. Rev. Lett. 97, 123401 (2006). https://doi.org/10.1103/PhysRevLett.97.123401

    Article  ADS  Google Scholar 

  11. V. F. Kovalenko, A. Yu. Bordyuk, and S. V. Shutov, Opt. Atmos. Okeana 24, 601 (2011).

    Google Scholar 

  12. V. V. Ivanov, V. I. Klimov, and T. M. Chernikova, J. Appl. Mech. Tech. Phys. 38, 123 (1997).

    Article  ADS  Google Scholar 

  13. N. F. Bunkin et al., Quantum Electron. 35, 180 (2005).

    Article  ADS  Google Scholar 

  14. G. N. Sarkisov, Phys.-Usp. 49, 809 (2006).

    Article  Google Scholar 

  15. S. D. Zakharov and I. V. Mosyagina, Preprint No. 35 (Lebedev Phys. Inst., Russ. Acad. Sci., Moscow, 2011).

  16. L. J. Barbour, G. W. Orr, and J. L. Atwood, Nature 393, 671 (1998). https://doi.org/10.1038/31441

    Article  ADS  Google Scholar 

  17. S. M. Lang et al., Phys. Chem. Chem. Phys. 18, 15727 (2016). https://doi.org/10.1039/c6cp00779a

    Article  Google Scholar 

  18. V. V. Atrazhev et al., J. Electrochem. Soc. 164, F1265 (2017). https://doi.org/10.1149/2.0041713jes

    Article  Google Scholar 

  19. V. V. Chaban, Phys. Chem. Chem. Phys. 20, 23754 (2018). https://doi.org/10.1039/c8cp04012e

    Article  Google Scholar 

  20. A. Verdaguer et al., Chem. Rev. 106, 1478 (2006). https://doi.org/10.1021/cr040376l

    Article  Google Scholar 

  21. J. Liu et al., Chem. Sci. 9, 2065 (2018). https://doi.org/10.1039/C7SC04205A

    Article  Google Scholar 

  22. O. D. Khvol’son, Physics Course (Gos. Tekhniko-teoreticheskoe Izd., Moscow, Leningrad, 1933).

    Google Scholar 

  23. J. B. Hasted, Physics of Atomic Collisions (Butterworths, 1964).

    Google Scholar 

  24. A. V. Polyanskaya and A. M. Polyanskii, in Proc. I Russ. Conf. “Physics for Life Sciences,” St. Petersburg, Russia, 2016, p. 91.

  25. I. S. Grigor’ev and E. Z. Meilekhov, Physical Quantities. Handbook (Energoatomizdat, Moscow, 1991).

    Google Scholar 

  26. A. Murzinova, G. A. Salishchev, and D. D. Afonichev, Phys. Met. Metallogr. 104, 195 (2007).

    Article  ADS  Google Scholar 

  27. B. A. Kolachev et al., Tekhnol. Legk. Splavov, No. 3, 10 (2007).

    Google Scholar 

  28. A. M. Polyanskiy et al., Acta Mech. 229, 4863 (2018). https://doi.org/10.1007/s00707-018-2262-8

    Article  MathSciNet  Google Scholar 

  29. A. A. Bogdanov, A. M. Polyanskii, and A. Ya. Fikh, in Proc. IX Int. Conf. “Modern Practical Physics,” Volgograd, Russia, 2006, p. 134.

  30. A. V. Eletskii, V. Yu. Zitserman, and G. A. Kobzev, in Proc. XÕVII Int. Sci.-Pract. Conf. “Technical Sciences: From Theory to Practice,” Novosibirsk, Russia, 2013, pp. 105–112.

  31. K. Murata et al., Nature 407, 599 (2000). https://doi.org/10.1038/35036519

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by program no. 31 of the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Polyanskaya.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyanskaya, A.V., Polyanskii, A.M. & Polyanskii, V.A. Relationship between Transport Phenomena and Characteristics of the Cluster Structure. Tech. Phys. 64, 902–908 (2019). https://doi.org/10.1134/S106378421906015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421906015X

Navigation