Skip to main content
Log in

Role of the Matrix Effect in Analysis of Biological Objects Using Mass Spectrometry with Inductively Coupled Plasma

  • EXPERIMENTAL INSTRUMENTS AND TECHNIQUE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

An attempt at eliminating the nonspectral matrix effect leading to suppression of the analytic signal intensity at instrument output has been made using an Agilent-7700 mass spectrometer with inductively coupled plasma with a quadrupole analyzer for several elements in blood and urine. It is shown that acid and salt compositions, as well as organic substances in the composition of the sample itself, play a decisive role in the emergence of the nonspectral matrix effect. The role of acid, salt, and organic compositions of the entire blood matrix and urine in underrating the results of determination of several elements has been estimated. It has also been shown that the internal standard must be chosen proceeding from the closeness of its first ionization potential to the first ionization potential of the element being determined. The contributions of nonspectral matrix effects to the distortion of the results of analysis of biological liquids have been analyzed and estimated. It has been found that the dependence of the matrix effect on salts in the acidic matrix and on the operating regime of the instrument is additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. A. Pupyshev and V. T. Surikov, Inductively Coupled Plasma Mass Spectrometry. Ion Production (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2006).

    Google Scholar 

  2. Agilent 7700 ICP-MS Specifications (Agilent Technologies, 2012).

  3. P. J. Parsons and F. Barbosa, Spectrochim. Acta B 62, 992 (2007).

    Article  ADS  Google Scholar 

  4. D. V. Yaroshenko and L. A. Kartsova, J. Anal. Chem. 69, 311 (2014).

    Article  Google Scholar 

  5. R. Xu, L. Fan, M. Rieser, and T. El-Shourbagy, J. Pharm. Biomed. 44, 342 (2007).

    Article  Google Scholar 

  6. A. Ciric, H. Prosen, M. Jelikic-Stankov, and P. Durdevic, Talanta 99, 780 (2012).

    Article  Google Scholar 

  7. R. King, R. Bonfiglio, C. Fernandez-Metzler, C. Miller-Stein, and T. Olah, J. Am. Soc. Mass Spectrom. 11, 942 (2000).

    Article  Google Scholar 

  8. R. Dams, M. Huestis, W. Lambert, and C. Murphy, J. Am. Soc. Mass Spectrom. 14, 1290 (2003).

    Article  Google Scholar 

  9. I. I. Stewart and J. W. Olesik, J. Anal. At. Spectrom. 13, 1313 (1998).

    Article  Google Scholar 

  10. J.-L. Todoli and J.-M. Mermet, Spectrochim. Acta B 54, 895 (1999).

    Article  ADS  Google Scholar 

  11. M. A. Kartasheva, V. G. Borovitskii, and S. Yu. Dubnikov, RF Patent No. 2039970 (1995).

  12. T. W. May and R. H. Wiedmeyer, At. Spectrosc. 19, 150 (1998).

  13. T. K. Nurubeyli, Z. K. Nurubeyli, K. Z. Nuriyev, and K. B. Gurbanov, Tech. Phys. 62, 305 (2017).

    Article  Google Scholar 

  14. G. I. Ramendik, E. V. Fatyushina, A. I. Stepanov, and V. S. Sevast’yanov, J. Anal. Chem. 56, 500 (2001).

    Article  Google Scholar 

  15. A. M. Gashimov, K. Z. Nuriev, S. Manuchar, K. B. Gurbanov, and Z. K. Nurubeili, Surf. Eng. Appl. Electrochem. 44, 159 (2008).

    Article  Google Scholar 

  16. Z. K. Nurubeili, K. Z. Nuriev, and G. M. Kerimov, Surf. Eng. Appl. Electrochem. 49, 331 (2013).

    Article  Google Scholar 

  17. A. F. Pupyshev and E. V. Semenova, Anal. Kontrol’ 4, 120 (2000).

    Google Scholar 

  18. J. Emsley, The Elements (Clarendon, 1998).

  19. C. Tanaselia, T. Frentiu, M. Ursu, M. Vlad, M. Chintoanu, E. Cordos, L. David, M. Paul, and D. Gomoiescu, Optoelectron. Adv. Mater. 2, 99 (2008).

    Google Scholar 

  20. D. R. Lide and B. Raton, CRC Handbook of Chemistry and Physics, 89th ed. (CRC, 2008).

    Google Scholar 

  21. S. Awad, S. P. Allison, and D. N. Lobo, Clin. Nutr. 27, 179 (2008).

    Article  Google Scholar 

  22. A. V. Skal’nyi, Chemical Elements in Human Physiology and Ecology (Oniks 21 Vek, Moscow, 2004).

  23. V. K. Karandashev, A. Yu. Leykin, and K. Z. Zhernokleeva, J. Anal. Chem. 69, 22 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Nurubeyli.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurubeyli, T.K., Nuriyev, K.Z., Nurubeyli, Z.K. et al. Role of the Matrix Effect in Analysis of Biological Objects Using Mass Spectrometry with Inductively Coupled Plasma. Tech. Phys. 64, 909–915 (2019). https://doi.org/10.1134/S1063784219060148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219060148

Navigation