Skip to main content
Log in

Interfacial Stresses and Anomalous Shape of Pseudoelastic Deformation Curves in Ni49Fe18Ga27Co6 Alloy Crystals Compressed along the [011]A Axis

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have performed experimental and theoretical investigation of the anomalous form of the compression diagrams and shape memory restoration curves in Ni49Fe18Ga27Co6 alloy crystals deformed by uniaxial compression along the [011]A crystallographic direction (A-austenite) in the temperature range of 200–350 K. It is found that in the investigated temperature range, all compression diagrams contain anomalous segments of smooth and sharp decrease in deforming stresses. It is shown that the segments of a smooth decrease in stress are associated with peculiarities in martensite reaction L12 → 14M, while segments of a sharp drop are due to instability of martensite reactions 14M → L10 and L12 → L10. A possible source of reaction instability is associated with interfacial stresses at the interfaces between the martensite and austenite phases (lamellas) due to different elastic moduli of contacting phases. The magnitude of these stresses is significant in the case of 14M → L10 and L12 → L10 transformations, which induces a sharp drop of the deforming stress, while the restoration of the shape memory effect is of a burst nature. It is established that the contribution of interfacial stresses to the free energy of martensite transformation is smaller than the dissipative (entropy) contribution to this energy; however, interfacial stresses higher than a certain threshold strongly affect transformation kinetics and, hence, determine the strongly anomalous shape of pseudoelastic deformation curves and burst restoration of the shape memory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. K. Ullakko, J. K. Xuang, C. Kantner, R. C. O’Handley, and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).

    Article  ADS  Google Scholar 

  2. H. Morito, K. Oikawa, A. Fujita, K. Ishida, K. Fukamichi, and R. Kainuma, Appl. Phys. Lett. 90, 062505 (2007).

    Article  ADS  Google Scholar 

  3. H. Morito, A. Fujita, K. Oikawa, K. Fukamichi, R. Kainuma, K. Ishida, and T. Takagi, J. Magn. Magn. Mater. 290291, 850 (2005).

  4. H. Zheng, M. Xia, J. Liu, Ya. Huang, and J. Li, Acta Mater. 53, 5125 (2005).

    Article  Google Scholar 

  5. V. I. Nikolaev, P. N. Yakushev, G. A. Malygin, and S. A. Pul’nev, Tech. Phys. Lett. 36, 914 (2010).

    Article  ADS  Google Scholar 

  6. V. I. Nikolaev, G. A. Malygin, S. A. Pulnev, P. N. Yakushev, and V. M. Egorov, Mater. Sci. Forum 738739, 51 (2013).

  7. G. A. Malygin, V. I. Nikolaev, A. I. Averkin, and A. P. Zograf, Phys. Solid State 58, 2488 (2016).

    Article  ADS  Google Scholar 

  8. V. I. Nikolaev, G. A. Malygin, A. I. Averkin, S. I. Stepanov, and A. P. Zograf, Mater. Today: Proc. 4, 4807 (2017).

    Google Scholar 

  9. C. Picornell, J. Pons, and E. Cesari, Mater. Sci. Eng., A 378, 222 (2004).

    Article  Google Scholar 

  10. A. Ibarra, J. San Juan, E. H. Bocanegra, and M. L. No, Acta Mater. 55, 4789 (2007).

    Article  Google Scholar 

  11. V. I. Nikolaev, P. N. Yakushev, G. A. Malygin, A.  I.  Averkin, A. V. Chikiryaka, and S. A. Pul’nev, Tech. Phys. Lett. 40, 123 (2014).

    Article  ADS  Google Scholar 

  12. V. I. Nikolaev, P. N. Yakushev, G. A. Malygin, A. I. Averkin, S. A. Pul’nev, G. P. Zograf, S. B. Kustov, and Yu. I. Chumlyakov, Tech. Phys. Lett. 42, 399 (2016).

    Article  ADS  Google Scholar 

  13. E. Panchenko, Yu. Chumlyakov, H. J. Maier, E. Timofeeva, and I. Karaman, Intermetallics 18, 2458 (2010).

    Article  Google Scholar 

  14. E. E. Timofeeva, E. Yu. Panchenko, Yu. I. Chumlyakov, and H. Maier, Russ. Phys. J. 54, 1427 (2012).

    Article  Google Scholar 

  15. G. A. Malygin, Phys.-Usp. 44, 173 (2001).

    Article  Google Scholar 

  16. G. A. Malygin, Phys. Solid State 43, 1339 (2001).

    Article  ADS  Google Scholar 

  17. P. N. Yakushev, Opt. Mem. Neural Networks 18, 222 (2004).

    Google Scholar 

  18. N. N. Peschanskaya, V. V. Shpeizman, P. N. Yakushev, A. S. Smolyanskii, and A. S. Shvedov, Bull. Russ. Acad. Sci.: Phys. 73, 1427 (2009).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 16-19-00129)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Malygin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malygin, G.A., Nikolaev, V.I., Krymov, V.M. et al. Interfacial Stresses and Anomalous Shape of Pseudoelastic Deformation Curves in Ni49Fe18Ga27Co6 Alloy Crystals Compressed along the [011]A Axis. Tech. Phys. 64, 819–827 (2019). https://doi.org/10.1134/S1063784219060124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219060124

Navigation