Skip to main content
Log in

Discharge System with a Self-Heated Hollow Cathode and an Evaporating Anode in a Cusp Magnetic Field for Oxide Coatings Deposition

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The properties of a discharge with a self-heated hollow cathode and an evaporating anode placed in a cusp magnetic field created by two oppositely connected coils installed near the anode and cathode are studied. There is a negatively biased sample holder in the region of the annular magnetic slit. Compressing the discharge column at the anode with a magnetic field ensures effective evaporation of the metal (aluminum) loaded into the crucible anode; the density of the oxygen-containing plasma generated in the volume was controlled by changing the current of the cathode magnetic coil. The rate of depositing the aluminum oxide coating by reactive anodic evaporation, in contrast to reactive magnetron sputtering, is not limited by the oxidation of the sputtering target; the lifetime of the thermal emission cathode is hundreds of hours. The high ion-current density of the plasma (up to 10 mA/cm2) ensures a decrease in the crystallization temperature and the formation of nanocrystalline oxide coatings. The conditions are determined for a stable discharge operation with a current of up to 40 A at a pressure of 0.1 Pa in an oxygen-argon mixture. The results of probe diagnostics of the plasma discharge parameters, deposition rate measurements, and an analysis of the structure and properties of aluminum oxide coatings are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Anders, J. Appl. Phys. 121, 171101 (2017).

    Article  ADS  Google Scholar 

  2. H. Morgner, M. Neumann, S. Straach, and M. Krug, Surf. Coat. Technol. 108109, 513 (1998). https://doi.org/10.1016/S0257-8972(98)00633-1

  3. O. Zywitzki, K. Goedicke, and H. Morgner, Surf. Coat. Technol. 151152, 14 (2002). https://doi.org/10.1016/S0257-8972(01)01632-2

  4. G. W. McClure, J. Appl. Phys. 45, 2078 (1974).

    Article  ADS  Google Scholar 

  5. A. G. Borisenko, V. A. Saenko, and V. A. Rudnitskii, High Temp. 37, 1 (1999).

    Google Scholar 

  6. M. M. Nikitin, Bull. Russ. Acad. Sci.: Phys. 74, 285 (2010).

    Article  Google Scholar 

  7. H. R. Kaufman and R. S. Robinson, AIAA J. 20, 745 (1982). https://doi.org/10.2514/3.51131

    Article  ADS  Google Scholar 

  8. P. Polishchuk and I. M. Yartsev, High Temp. 34, 379 (1996).

    Google Scholar 

  9. V. M. Nerovnyi and A. D. Khakhalev, J. Phys. D: Appl. Phys. 41, 035201 (2008). https://doi.org/10.1088/0022-3727/41/3/035201

    Article  ADS  Google Scholar 

  10. N. V. Gavrilov, A. S. Kamenetskikh, P. V. Tretnikov, and A. V. Chukin, Tech. Phys. Lett. 43, 951 (2017).

    Article  ADS  Google Scholar 

  11. N. V. Gavrilov, A. S. Kamenetkikh, P. V. Tretnikov, and A. V. Chuckin, Surf. Coat. Technol. 337, 453 (2018). https://doi.org/10.1016/j.surfcoat.2018.01.058

    Article  Google Scholar 

  12. O. A. Lavrent’ev, in Magnetic Traps (Naukova Dumka, Kiev, 1968), p. 77.

    Google Scholar 

  13. N. V. Gavrilov, A. S. Kamenetskikh, S. N. Paranin, A. V. Spirin, and A. V. Chukin, Instrum. Exp. Tech. 60, 742 (2017).

    Article  Google Scholar 

  14. M. Schatz, in Proc. 18th Int. Electric Propulsion Conf., Alexandria, United States, 1985. https://doi.org/10.2514/6.1985-2008

  15. D. M. Goebel, K. K. Jameson, I. Katz, and I. G. Mikellides, in Proc. 30th Int. Electric Propulsion Conf., Florence, Italy, 2007, p. 2007-277.

  16. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 18-19-00567.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Gavrilov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, N.V., Kamenetskikh, A.S., Emlin, D.R. et al. Discharge System with a Self-Heated Hollow Cathode and an Evaporating Anode in a Cusp Magnetic Field for Oxide Coatings Deposition. Tech. Phys. 64, 807–813 (2019). https://doi.org/10.1134/S1063784219060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219060082

Navigation