Skip to main content
Log in

The Gas-Jet Method of Deposition of Nanostructured Silver Films

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The synthesis of thin silver films by the gas-jet deposition method is experimentally and theoretically studied. When the metal is deposited onto silicon substrates from a supersonic jet of silver vapor with a helium carrier gas, nanostructured films with a 3−30 nm size of nanostructures are obtained for a 1230−1380 K range of jet source temperatures. The data on Ag–He gas-jet dynamics when it is expanded into vacuum (velocity, temperature, concentration, flux of particles onto a substrate) depending on parameters at the source (vapor temperature, flow rate of a carrier gas) are obtained by the method of direct simulation Monte Carlo. The range of optimal helium flow rates, when the efficiency of a gas-jet source is maximal, is determined. It is established that the presence of a background gas in a deposition chamber at pressure higher than 1 Pa decreases the flow of particles onto a substrate, and a simple way of its evaluation is proposed. Conditions for formation of silver clusters in the jet are determined by using the simulation. It is shown that for experimental deposition regimes there are no clusters in the jet, and the observed silver nanostructures are formed on the substrate surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. Hofmann, C. Ducati, R. J. Neill, S. Piscanec, A. C. Ferrari, J. Geng, R. E. Dunin-Borkowski, and J. Robertson, J. Appl. Phys. 94, 6005 (2003).

    Article  ADS  Google Scholar 

  2. M. Haruta, Chem. Rec. 3, 75 (2003).

    Article  Google Scholar 

  3. N. R. Agarwal, F. Neri, S. Trusso, A. Lucotti, and P. M. Ossi, Appl. Surf. Sci. 258, 9148 (2012).

    Article  ADS  Google Scholar 

  4. S. H. Cho, Phys. Med. Biol. 50, 163 (2005).

    Article  Google Scholar 

  5. J. M. Warrender and M. J. Aziz, Phys. Rev. B 75, 085433 (2007).

    Article  ADS  Google Scholar 

  6. P. M. Ossi, F. Neri, N. Santo, and S. Trusso, Appl. Phys. A 104, 829 (2011).

    Article  ADS  Google Scholar 

  7. S. V. Starinskiy, Yu. G. Shukhov, and A. V. Bulgakov, Tech. Phys. Lett. 42, 411 (2016).

    Article  ADS  Google Scholar 

  8. V. Svorcik, O. Kvitek, O. Lyutakov, J. Siegel, and Z. Kolska, Appl. Phys. A 102, 747 (2011).

    Article  ADS  Google Scholar 

  9. A. I. Safonov, S. V. Starinskii, V. S. Sulyaeva, N. I. Timoshenko, and E. Y. Gatapova, Tech. Phys. Lett. 43, 159 (2017).

    Article  ADS  Google Scholar 

  10. A. I. Safonov, V. S. Sulyaeva, N. I. Timoshenko, K. V. Kubrak, and S. V. Starinskiy, Phys. Lett. A 380, 3919 (2016).

    Article  ADS  Google Scholar 

  11. I. Yamada and T. Takagi, IEEE Trans. Electron Devices 34, 1018 (1987).

    Article  ADS  Google Scholar 

  12. P. Gatz and O. F. Hagena, Appl. Surf. Sci. 91, 169 (1995).

    Article  ADS  Google Scholar 

  13. K. Wagner, P. Piseri, H. V. Tafreshi, and P. Milani, J. Phys. D: Appl. Phys. 39, R439 (2006).

    Article  ADS  Google Scholar 

  14. M. N. Andreev, A. K. Rebrov, A. I. Safonov, and N. I. Timoshenko, Nanotechnol. Russ. 6, 587 (2011).

    Article  Google Scholar 

  15. M. J. Aziz, Appl. Phys A 93, 579 (2008).

    Article  ADS  Google Scholar 

  16. C. Polop, C. Rosiepen, S. Bleikamp, R. Drese, J. Mayer, A. Dimyati, and T. Michely, New J. Phys. 9, 74 (2007).

    Article  ADS  Google Scholar 

  17. S. V. Starinskiy, V. S. Sulyaeva, Yu. G. Shukhov, A. G. Cherkov, N. I. Timoshenko, A. V. Bulgakov, and A. I. Safonov, J. Struct. Chem. 58, 1581 (2017).

    Article  Google Scholar 

  18. E. Fazio, F. Neri, P. M. Ossi, N. Santo, and S. Trusso, Appl. Surf. Sci. 255, 9676 (2009).

    Article  ADS  Google Scholar 

  19. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon, Oxford, 1994).

    Google Scholar 

  20. R. Jansen, I. Wysong, S. Gimelshein, M. Zeifman, and U. Buck, J. Chem. Phys. 132, 244105 (2010).

    Article  ADS  Google Scholar 

  21. A. Borner, Z. Li, and D. A. Levin, AIP Conf. Proc. 1501, 565 (2012).

    Article  ADS  Google Scholar 

  22. N. Y. Bykov, Yu. E. Gorbachev, and V. V. Zakharov, AIP Conf. Proc. 1786, 050001 (2016).

    Article  Google Scholar 

  23. T. E. Itina, M. Sentis, and W. Marine, Appl. Surf. Sci. 252, 4433 (2006).

    Article  ADS  Google Scholar 

  24. N. Yu. Bykov and G. A. Lukianov, Thermophys. Aeromech. 13, 523 (2006).

    Article  ADS  Google Scholar 

  25. N. Y. Bykov, N. M. Bulgakova, A. V. Bulgakov, and G. A. Loukianov, Appl. Phys. A 79, 1097 (2004).

    Article  ADS  Google Scholar 

  26. https://www.powerstream.com/vapor-pressure.htm.

  27. A. Bondi, Phys. Chem. 68, 441 (1964).

    Article  Google Scholar 

  28. R. L. Johnston, Atomic and Molecular Clusters (Taylor & Francis, New York, 2002).

    Book  Google Scholar 

  29. J. F. Crifo, ICARUS 84, 414 (1990).

    Article  ADS  Google Scholar 

  30. N. Y. Bykov and Yu. E. Gorbachev, Appl. Math. Comput. 296, 215 (2017).

    MathSciNet  Google Scholar 

  31. B. M. Smirnov, Phys.-Usp. 167, 1117 (1997).

    Article  Google Scholar 

  32. Physicochemical Processes in Gas Dynamics, Vol. 1: Dynamics of Physicochemical Processes in Gas and PLasma, Ed. by G. G. Chernyi and S. A. Losev (Mosk. Gos. Univ., Moscow, 1995).

    Google Scholar 

  33. Gaussian 09, Revision D.01. http://gaussian.com.

  34. D. L. Baulch, J. Duxbury, S. J. Grant, and D. C. Montague, J. Phys. Chem. Ref. Data 10, 1 (1981).

    Article  Google Scholar 

  35. W. C. Gardiner, Combustion Chemistry (Springer, New York, 1984).

    Book  Google Scholar 

  36. D. I. Zhukhovitskii, J. Chem. Phys. 101, 5076 (1994).

    Article  ADS  Google Scholar 

  37. B. M. Smirnov and A. S. Yatsenko, Phys.-Usp. 39, 211 (1996).

    Article  Google Scholar 

  38. V. N. Kondrat’ev and E. E. Nikitin, Kinetics and Mechanism of Gas-Phase Reactions (Nauka, Moscow, 1974).

    Google Scholar 

  39. J. A. Venablies, G. D. T. Spliller, and M. Hanbukah, Rep. Prog. Phys. 47, 399 (1984).

    Article  ADS  Google Scholar 

  40. M. C. Tringides, Surface Diffusion: Atomistic and Collective Processes (Plenum, New York, 1997).

    Book  Google Scholar 

  41. Yu. A. Koshmarov and Yu. A. Ryzhov, Applied Rarefied Gas Dynamics (Mashinostroenie, Moscow, 1977).

    Google Scholar 

  42. H. Ashkenas and F. S. Sherman, in Rarefied Gas Dynamics, Ed. by J. H. de Leeuw (Academic, New York, 1965), p. 84.

    Google Scholar 

  43. A. K. Rebrov, in Rarefied Gas Dynamics, Ed. by O. M. Belotserkovskii (Springer, New York, 1985), p. 849.

    Google Scholar 

  44. A. V. Bulgakov, Proc. SPIE 2403, 75 (1995).

    Article  ADS  Google Scholar 

  45. A. V. Bulgakov, M. R. Predtechensky, and A. P. Mayorov, Appl. Surf. Sci. 9698, 159 (1996).

  46. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge Univ. Press, 1970).

    MATH  Google Scholar 

  47. O. F. Hagena, Surf. Sci. 106, 101 (1981).

    Article  ADS  Google Scholar 

  48. O. F. Hagena, Z. Phys. D 20, 425 (1991).

    Article  ADS  Google Scholar 

  49. V. G. Dulov and G. A. Luk’yanov, Gas Dynamics of Flow Processes (Nauka, Novosibirsk, 1984).

    MATH  Google Scholar 

Download references

Funding

The experimental part of the paper was supported by the Russian Science Foundation (project no. 16-19-10506). The computational studies were supported by the Ministry of Education and Science of the Russian Federation (project no. 16.8548.2017/8.9) with the use of computational resources of the supercomputer center of Peter the Great St. Petersburg Polytechnical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Bykov.

Additional information

Translated by D. Churochkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, N.Y., Safonov, A.I., Leshchev, D.V. et al. The Gas-Jet Method of Deposition of Nanostructured Silver Films. Tech. Phys. 64, 776–789 (2019). https://doi.org/10.1134/S1063784219060045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219060045

Navigation