Technical Physics

, Volume 64, Issue 5, pp 615–619 | Cite as

Analysis of the Dependence of the Break-Down Point on Temperature of Microwave Heating of Loaded Heterogeneous Materials (Rocks) Based on the Formation of Growth of Microcracks

  • M. G. Menzhulin
  • Kh. F. MakhmudovEmail author


Analysis of the dependence of the break-down point of granite on the temperature of microwave heating allows identification of the following characteristic areas: hardening is observed at low temperature heating up to 390 K; a decrease in strength appears in the temperature range from 390 to 460 K, which is due to generation, growth, and coalescence of smaller cracks and their redistribution to the boundaries of grains with the formation of intergranular microcracks; there is a significant decrease in the strength at the temperature range from 460 to 550 K, which is caused by the separation of grains into blocks with a small area of crack density as a result of their coalescence, and the destruction and splitting of granite samples occurs at temperatures above 593 K due to the development of all kinds of microcracks. The developed method of determining the rational parameters of the microwave energy impact on the softening of hard rocks in the field of standing electromagnetic waves allows justification of the effective parameters of the impact of microwave energy on quartz-containing hard rocks for their softening and destruction based on the study of the dynamics of induced microcracks.



The author is grateful to O.I. Kazanin for fruitful discussion of the results.


  1. 1.
    Yu. M. Misnik, Basics of Softening of Frozen Rocks by Microwave Fields (Leningr. Gorn. Inst., Leningrad, 1982), p. 28.Google Scholar
  2. 2.
    B. K. Sahoo, S. De, M. Carsky, and B. C. Meikap, Ind. Eng. Chem. Res. 49, 3015 (2010).CrossRefGoogle Scholar
  3. 3.
    M. G. Menzhulin, N. V. Sokolova, A. N. Shishov, and V. A. Khominskii, Gorn. Inf.-Anal. Byull., No. 3, 164 (1999).Google Scholar
  4. 4.
    B. Zhang, Y. Zhao, C. Zhou, C. Duan, and L. Dong, Energy Fuelds 29, 1243 (2015).CrossRefGoogle Scholar
  5. 5.
    S. S. Kingman, C. E. Snape, and J. P. Robinson, Chem. Res. 46, 4811 (2007).Google Scholar
  6. 6.
    M. G. Menzhulin, N. V. Sokolova, and A. N. Shishov, Gorn. Inf.-Anal. Byull., No. 8, 229 (2000).Google Scholar
  7. 7.
    E. Lester, S. Kingman, C. Dodds, and J. Patrick, Fuel 85, 2057 (2006).CrossRefGoogle Scholar
  8. 8.
    E. Ruisanchez, A. Arenillas, E. J. Juarez-Perez, and J. A. Menendez, Fuel 102, 65 (2012).CrossRefGoogle Scholar
  9. 9.
    J. A. Menendez, A. Arenillas, B. Fidalgo, Y. Fernandez, L. Zubizarreta, E. G. Calvo, and J. M. Bermadez, Fuel Process. Technol. 91, 1 (2010).CrossRefGoogle Scholar
  10. 10.
    J. A. Menendez, E. J. Juarez-Perez, E. Ruisanchez, J. M. Bermadez, and A. Arenillas, Carbon 49, 346 (2010).CrossRefGoogle Scholar
  11. 11.
    P. M. Kanilo, V. I. Kazantsev, N. I. Rasyuk, K. Schunemann, and D. M. Varviv, Fuel 82, 187 (2003).CrossRefGoogle Scholar
  12. 12.
    D. M. Varviv, V. I. Kazantsev, P. M. Kanilo, N. I. Rasyuk, K. Schunemann, and S. V. Crytsayenko, Telecommun. Radio Eng. 61, 650 (2004).CrossRefGoogle Scholar
  13. 13.
    R. M. Hardgrove, Trans. Am. Soc. Mech. Eng. 54, 37 (1932).Google Scholar
  14. 14.
    E. E. Sergo, Crushing, Grinding, and Screening of Minerals: College Textbook (Nedra, Moscow, 1980).Google Scholar
  15. 15.
    L. G. Austin, P. Bagga, and M. Celik, Powder Technol. 28, 235 (1981).CrossRefGoogle Scholar
  16. 16.
    S. W. Kingman and N. A. Rowson, Miner. Eng. 11, 1081 (1998).CrossRefGoogle Scholar
  17. 17.
    M. S. Delibalta and O. Y. Toraman, Energy Sci. Technol. 3, 46 (2012).Google Scholar
  18. 18.
    B. K. Sahoo, S. Dea, and B. C. Meikap, Fuel Process. Technol. 92, 1920 (2011).CrossRefGoogle Scholar
  19. 19.
    B. K. Sahoo, S. De, M. Carsky, and B. C. Meikap, Ind. Eng. Chem. Res. 49, 3015 (2010).CrossRefGoogle Scholar
  20. 20.
    S. Kingman, Microwave Pre-Treatment of Coal and Coal Blends to Improve Milling Performance (Univ. of Nottingham, Nottingham, 2006).Google Scholar
  21. 21.
    A. N. Didenko, Microwave Power Engineering: Theory and Practice (Nauka, Moscow, 2003).Google Scholar
  22. 22.
    S. Samanli, Fuel 90, 659 (2011).CrossRefGoogle Scholar
  23. 23.
    S. S. Krasnovskii, E. I. Arsh, and M. F. Drukovannyi, Izv. Dnepropetr. Gorn. Inst. 40, 124 (1961).Google Scholar
  24. 24.
    S. S. Krasnovskii and Yu. N. Zakharov, Proc. Int. Symp. “Miner’s Week,” Moscow, Russia, 1994 (Mosk. Gos. Gorn. Univ., Moscow, 1994), p. 193.Google Scholar
  25. 25.
    N. N. Peschanskaya and A. B. Sinani, Phys. Solid State 50, 182 (2008).CrossRefGoogle Scholar
  26. 26.
    A. A. Kozhushko and A. B. Sinani, Phys. Solid State 47, 836 (2005).CrossRefGoogle Scholar
  27. 27.
    A. N. Stavrogin, Zap. Gorn. Inst. 156, 44 (2004).Google Scholar
  28. 28.
    V. S. Kuksenko, Kh. F. Makhmudov, V. A. Mansurov, U. Sultonov, and M. Z. Rustamova, J. Min. Sci. 45, 355 (2009).CrossRefGoogle Scholar
  29. 29.
    V. S. Kuksenko, Kh. F. Makhmudov, M. D. Il’inov, and Z. M. Abdurakhmonov, Vestn. Inzh. Shk. Dal’nevost. Fed. Univ., No. 3 (20), 98 (2014).Google Scholar
  30. 30.
    Kh. F. Makhmudov, Deform. Razrushenie Mater., No. 8, 41 (2012).Google Scholar
  31. 31.
    M. G. Menzhulin, A. N. Shishov, and S. V. Seryshev, in Physics and Mechanics of Rock Destruction in the Context of Prediction of Dynamic Phenomena (VNIMI, St. Petersburg, 1995), p. 59.Google Scholar
  32. 32.
    V. S. Kuksenko, Kh. F. Makhmudov, and B. Ts. Manzhikov, J. Min. Sci. 46, 384 (2010).CrossRefGoogle Scholar
  33. 33.
    Kh. F. Makhmudov, M. G. Menzhulin, M. V. Zakharyan, U. Sultonov, and Z. M. Abdurakhmonov, Tech. Phys. 60, 1651 (2015).CrossRefGoogle Scholar
  34. 34.
    Kh. F. Makhmudov, Tech. Phys. 56, 72 (2011).CrossRefGoogle Scholar
  35. 35.
    Kh. F. Makhmudov and V. S. Kuksenko, Phys. Solid State 47, 882 (2005).CrossRefGoogle Scholar
  36. 36.
    M. G. Menzhulin, Kh. F. Makhmudov, V. S. Kuksenko, and U. Sultonov, Vestn. Tambov. Univ. Ser.: Estestv. Tekh. Nauki 18, 1667 (2013).Google Scholar
  37. 37.
    M. G. Menzhulin, Kh. F. Makhmudov, and I. P. Shcherbakov, in Science Today: Theory, Practice, Innovation (Rostov-on-Don, 2014), p. 159.Google Scholar
  38. 38.
    M. G. Menzhulin, Kh. F. Makhmudov, and I. P. Shcherbakov, Thermokinetic Model and Dynamics of Microcracks in Rocks (Lambert Academic, 2014).Google Scholar
  39. 39.
    A. P. Dmitriev and S. A. Goncharov, Thermal and Mixed Destruction of Rocks (Nedra, Moscow, 1978).Google Scholar
  40. 40.
    V. A. Petrov and G. V. Petrov, RF Patent No. 2167404 (1999).Google Scholar
  41. 41.
    V. S. Kuksenko and Kh. F. Makhmudov, Russ. Geol. Geophys. 58, 738 (2017).CrossRefGoogle Scholar
  42. 42.
    M. G. Menzhulin and Kh. F. Makhmudov, Tech. Phys. 62, 1056 (2017).CrossRefGoogle Scholar
  43. 43.
    I. P. Shcherbakov, V. I. Vettegren, R. I. Mamalimov, and Kh. F. Makhmudov, Tech. Phys. 62, 1194 (2017).CrossRefGoogle Scholar
  44. 44.
    I. P. Shcherbakov, V. I. Vettegren, R. I. Mamalimov, and Kh. F. Makhmudov, Phys. Solid State 59, 575 (2017).CrossRefGoogle Scholar
  45. 45.
    S. N. Zhurkov, Vestn. Akad. Nauk SSSR, No. 3, 46 (1968).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.St. Petersburg Mining UniversitySt. PetersburgRussia
  2. 2.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations