Technical Physics

, Volume 64, Issue 5, pp 629–634 | Cite as

Resonance Variations of the Microwave Refractive Index in YIG Plates

  • E. A. KuznetsovEmail author
  • A. B. Rinkevich
  • D. V. Perov


The influence of microwave resonance phenomena on complex refractive index in YIG plates has been theoretically and experimentally studied in the frequency range 26–38 GHz. It has been shown that a change in the magnetic field causes severe resonance-type changes in transmission and reflection factors. These changes are due both to effective interaction between millimeter electromagnetic waves and YIG plates (specifically, under ferromagnetic resonance conditions) and to the fulfillment of geometrical resonance conditions (when an integer number of half-waves or an integer odd number of quarter-waves are accommodated on the thickness of the plate). An algorithm to calculate complex refractive index with regard to the tensor-type magnetic permeability of YIG is suggested. The field and frequency dependences of complex refractive index have been analyzed. Geometrical resonance fields have been compared with extrema in the field dependences of the transmission and reflection factor moduli.



Electron microscopic examinations were conducted in the Common Use Center (Institute of Metals, Ural Branch, Russian Academy of Sciences).


This study was supported by the Russian Science Foundation (grant no. 17-12-01002 Refractive Index of Inhomogeneous Media in a Magnetic Field and Microwave Field Nonuniformity).


  1. 1.
    Ü. Özgür, Y. Alivov, and H. Morkoc, J. Mater. Sci.: Mater. Electron. 20, 789 (2009).Google Scholar
  2. 2.
    V. G. Harris, IEEE Trans. Magn. 48, 1075 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    M. I. Martynov, A. A. Nikitin, A. B. Ustinov, and B. A. Kalinikos, Proc. All-Russian Conf. “Microwave Electronics and Microelectronics,” St. Petersburg, Russia, 2015, p. 130.Google Scholar
  4. 4.
    Yu. M. Yakovlev and S. Sh. Gendelev, Ferrite Single Crystals in Radio Engineering, Ed. by G. A. Matveev (Sovetskoe Radio, Moscow, 1975).Google Scholar
  5. 5.
    A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Fizmatlit, Moscow, 1994).Google Scholar
  6. 6.
    A. Ustinov, V. Kochemasov, and E. Khas’yanova, Elektronika, No. 8, 86 (2015).Google Scholar
  7. 7.
    Z. Wang, M. Cherkasskii, B. A. Kalinikos, and M. Wu, Phys. Rev. B 91, 174418 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. Kondrashov, A. Ustinov, M. Cherkasskii, B. A. Kalinikos, and S. O. Demokritov, Proc. 8th Joint European Magnetics Symp., Glasgow, United Kingdom, 2016.Google Scholar
  9. 9.
    Electromagnetic Metamaterials: Physics and Engineering Explorations, Ed. by N. Engheta and R. W. Ziolkowski (Wiley, 2006).Google Scholar
  10. 10.
    A. B. Rinkevich, M. I. Samoilovich, S. M. Klescheva, D. V. Perov, A. M. Burkhanov, and E. A. Kuznetsov, IEEE Trans. Nanotechnol. 13, 3 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    M. G. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    A. B. Rinkevich, D. V. Perov, M. I. Samoilovich, and S. M. Klescheva, Metamaterials 6, 27 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    L. M. Brekhovskikh, Waves in Layered Media (Akad. Nauk SSSR, Moscow, 1957).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. A. Kuznetsov
    • 1
    • 2
    Email author
  • A. B. Rinkevich
    • 1
  • D. V. Perov
    • 1
  1. 1.Mikheev Institute of Metals, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Russian State Vocational Pedagogical UniversityYekaterinburgRussia

Personalised recommendations