Skip to main content
Log in

Phonon Thermal Conductivity and Phase Equilibria of Fractal Bi–Sb Nanoparticles

  • SOLID STATE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The thermal conductivity component associated with lattice vibrations is one of the quantities determining the thermoelectric activity of a material. We have simulated the dependences of phase composition and the phonon component of the thermal conductivity associated with it on the shape of nanoparticles of a Bi–Sb alloy with an equiatomic composition and with core–shell configuration. The shape of a particle is simulated by a coefficient corresponding to the extent of deviation of the particle shape from spherical or by its fractal dimension. It is shown that mutual solubilities of components depend on the nanoparticle shape and on the mutual arrangement of coexisting phases, and the thermodynamic equilibrium position for particles with complex morphology corresponds to the homogeneous state. Homogenization of a nanoparticle reduces the phonon component of its thermal conductivity by 70–80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Y. Du, J. Xu, B. Paul, and P. Eklund, Appl. Mater. Today 12, 366 (2018). https://doi.org/10.1016/j.apmt.2018.07.004

    Article  Google Scholar 

  2. J.-Z. Hu, B. Liu, J. Zhou, B. Li, and Y. Wang, Jpn. J. Appl. Phys. 57, 71801 (2018). https://doi.org/10.7567/JJAP.57.071801

    Article  Google Scholar 

  3. L. C. Din, N. Meyerheinrich, L. Tan, K. Rahaoui, R. Jain, and A. Akbarzadeh, Energy Procedia 110, 32 (2018). https://doi.org/10.1016/j.egypro.2017.03.101

    Google Scholar 

  4. Z. Li, N. Miao, J. Zhou, Z. Sun, Z. Liu, and H. Xu, Nano Energy 43, 285 (2018). https://doi.org/10.1016/j.nanoen.2017.11.043

    Article  Google Scholar 

  5. I. V. Erofeeva, M. V. Dorokhin, V. P. Lesnikov, Y. M. Kuznetsov, A. V. Zdoroveyshchev, and E. A. Pitirimova, Semiconductors 51, 1403 (2017). https://doi.org/10.1134/S1063782617110112

    Article  ADS  Google Scholar 

  6. O. Caballero-Calero and M. Martín-González, Scr. Mater. 111, 54 (2016). https://doi.org/10.1016/j.scriptamat.2015.04.020

    Article  Google Scholar 

  7. L. P. Bulat, A. V. Novotel’nova, A. S. Tukmakova, D.  E. Yerezhep, V. B. Osvenskii, A. I. Sorokin, D. A. Pshenai-Severin, and S. Ashmontas, Tech. Phys. 62, 604 (2017). https://doi.org/10.1134/S1063784217040053

    Article  Google Scholar 

  8. M. Otsuka, R. Homma, and Y. Hasegawa, J. Electron. Mater. 46, 2752 (2017). https://doi.org/10.1007/s11664-016-4955-x

    Article  ADS  Google Scholar 

  9. S. Lee, K. Esfarjani, J. Mendoza, M. S. Dresselhaus, and G. Chen, Phys. Rev. B 89, 85206 (2014). https://doi.org/10.1103/PhysRevB.89.085206

    Article  ADS  Google Scholar 

  10. N. S. Petrova, V. A. Danilov, Y. A. Boikov, V. S. Kuznetsova, and S. V. Novikov, Tech. Phys. 63, 1026 (2018). https://doi.org/10.1134/S106378421807023X

    Article  Google Scholar 

  11. M. A. Bykov, G. F. Voronin, and N. M. Mukhamedzhanova, Direct and Inverse Problems in Chemical Thermodynamics (Nauka, Novosibirsk, 1987).

    Google Scholar 

  12. K. Sim and J. Lee, J. Alloys Compd. 590, 140 (2014). https://doi.org/10.1016/j.jallcom.2013.12.101

    Article  Google Scholar 

  13. J. Sopoušek, J. Vřešt'ál, J. Pinkas, P. Broz, J. Buršik, A.  Styskalik, D. Skoda, A. Zobak, and J. Lee, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 45, 33 (2014). https://doi.org/10.1016/j.calphad.2013.11.004

    Article  Google Scholar 

  14. F. Monji and M. A. Jabbareh, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 58, 1 (2017). https://doi.org/10.1016/j.calphad.2017.04.003

    Article  Google Scholar 

  15. V. B. Fedoseev, A. V. Shishulin, E. K. Titaeva, and E. N. Fedoseeva, Phys. Solid State 58, 2095 (2016). https://doi.org/10.1134/S1063783416100152

    Article  ADS  Google Scholar 

  16. A. V. Shishulin and V. B. Fedoseev, Inorg. Mater. 54, 546 (2018). https://doi.org/10.1134/S0020168518050114

    Article  Google Scholar 

  17. G. Guisbiers, R. Mendoza-Pérez, L. Bazán-Díaz, R. Mendoza-Cruz, J. J. Velázquez-Salazar, and M. J. Yakamán, J. Phys. Chem. 121, 6930 (2017). https://doi.org/10.1021/acs.jpcc.6b09115

    Google Scholar 

  18. M. Cui, H. Lu, H. Jiang, Z. Cao, and X. Meng, Sci. Rep. 7, 41990 (2017). https://doi.org/10.1038/srep41990

    Article  ADS  Google Scholar 

  19. V. B. Fedoseev and A. V. Shishulin, Phys. Solid State 60, 1398 (2018). https://doi.org/10.1134/S1063783418070120

    Article  ADS  Google Scholar 

  20. V. B. Fedoseev and E. N. Fedoseeva, Russ. J. Phys. Chem. A 88, 436 (2014). https://doi.org/10.1134/S0036024414020083

    Article  Google Scholar 

  21. D. Hourlier and P. Perrot, Mater. Sci. Forum 653, 77 (2010). doi 10.4028/www.scientific.net/MSF.653.77

  22. A. V. Knyazev, E. N. Bulanov, and E. V. Vlasova, Inorg. Mater. Appl. Res. 3, 417 (2012). https://doi.org/10.1134/S2075113312050073

    Article  Google Scholar 

  23. V. B. Fedoseev, Pis’ma Mater. 2, 78 (2012).

    Google Scholar 

  24. S. V. Kalinin, D. L. Gorbachev, A. Yu. Borisevich, K. V. Tomashevitch, A. A. Vertegel, A. J. Markworth, and Yu. D. Tretyakov, Phys. Rev. E 61, 1189 (2000). https://doi.org/10.1103/PhysRevE.61.1189

    Article  ADS  Google Scholar 

  25. V. N. Glazkov, Kinetic and Electric Phenomena in Solid Bodies and Metals (Mosk. Fiz.-Tekh. Inst., Moscow, 2015).

    Google Scholar 

  26. A. Bose, C. A. Schuh, J. C. Tobia, N. Tuncer, N. M. Mykulowycz, A. Preston, A. C. Barbati, B. Kernan, M. A. Gibson, D. Krause, T. Brzezinski, J. Schroers, R. Fulop, J. S. Myerberg, M. Sowerbutts, et al., Int. J. Refract. Met. Hard Mater. 73, 22 (2018). https://doi.org/10.1016/j.ijrmhm.2018.01.019

    Article  Google Scholar 

  27. A. I. Gusev and S. I. Sadovnikov, JETP Lett. 106, 454 (2017). https://doi.org/10.1134/S0021364017190080

    Article  ADS  Google Scholar 

  28. M. J. Marcinkowski, Philos. Mag. A 145, 159 (1968). https://doi.org/10.1080/14786436808218189

    Article  ADS  Google Scholar 

  29. W. Tyson and W. Miller, Surf. Sci. 62, 267 (1977). https://doi.org/10.1016/0039-6028(77)90442-3

    Article  ADS  Google Scholar 

  30. L. P. Bulat, V. T. Bublik, I. A. Drabkin, V. V. Karataev, V. B. Osvenskii, Yu. N. Parkhomenko, G. I. Pivovarov, D. A. Pshenai-Severin, and N. Yu. Tabachkova, J.   Electron. Mater. 39, 16504 (2010). https://doi.org/10.1007/s11664-010-1250-0

    Google Scholar 

  31. L. P. Bulat, I. A. Drabkin, V. V. Karatayev, V. B. Osvenskii, Yu. N. Parkhomenko, D. A. Pshenay-Severin, and A. I. Sorokin, J. Electron. Mater. 43, 2121 (2014). https://doi.org/10.1007/s11664-014-2988-6

    Article  ADS  Google Scholar 

  32. H. J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, 2016), pp. 74–76. https://doi.org/10.1007/978-3-642-00716-3

    Book  Google Scholar 

Download references

FUNDING

This study was supported by the Russian Foundation for Basic Research (project no. 18-08-01356), as well as the Russian Foundation for Basic Research and Administration of Nizhegorodskaya oblast (project no. 18-43-520039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shishulin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishulin, A.V., Fedoseev, V.B. & Shishulina, A.V. Phonon Thermal Conductivity and Phase Equilibria of Fractal Bi–Sb Nanoparticles. Tech. Phys. 64, 512–517 (2019). https://doi.org/10.1134/S1063784219040200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219040200

Navigation