Skip to main content
Log in

Self-Organization of Multiscale Structural Groups in a Low-Carbon Wire Subjected to Severe Drawing

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The peculiarities of the mechanical parameters and atomic structure of wires made of 08G2S steel subjected to severe drawing with a combination of shear and classical circular drawing of different diameters. The split form of interference maximums (211) in X-ray diagrams of samples is evidence for delamination in families of the mentioned planes into contracted and extended groups, which is accompanied by the partial order–disorder phase transition with formation of the amorphized fraction from fragments of nanosized atomic groups of these planes (clusters). The dependence on steel deformation revealed the nature of the change in the symmetry of the distribution of structural groups relative to the angular position of the diffraction maximum from the planes (211). It is established that with increased deformation (ε > 30%) the intensities of coherent and incoherent X-ray CrKα-emissions vary quantitatively, which proves the development of self-organizing processes contributing to the increase in the volume fraction of the order relative to the disorder in 08G2S steel, even subject to severe mechanical loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. Z. Valiev and T. G. Langdon, Prog. Mater. Sci. 51, 881 (2006).

    Article  Google Scholar 

  2. Y. E. Beygelzimer, V. N. Varyukhin, D. V. Orlov, and S. G. Synkov, Twist Extrusion—The Accumulation of Strain (TEAN, Donetsk, 2003).

    Google Scholar 

  3. A. P. Zhilyaev and T. G. Langdon, Prog. Mater. Sci. 53, 893 (2008).

    Article  Google Scholar 

  4. R. Z. Valiev and I. V. Alexandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000).

    Google Scholar 

  5. N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Raab, and R. Z. Valiev, Mater. Sci. Eng. A 554, 105 (2012).

    Article  Google Scholar 

  6. V. M. Varyukhin, N. N. Belousov, O. G. Pashins’ka, and V. M. Tkachenko, Metallofiz. Noveishie Tekhnol. 27, 1113 (2005).

    Google Scholar 

  7. E. G. Pashinskaya, Physical and Chemical Basis of Structure Refinement under Combined Plastic Strain (Veber, Donetsk, 2009).

    Google Scholar 

  8. H. L. Yu, C. Lu, A. K. Tieu, H. J. Li, A. Godbole, and S. H. Zhang, Adv. Eng. Mater. 18, 754 (2016).

    Article  Google Scholar 

  9. E. G. Pahynskaya, V. N. Varyukhin, V. V. Stolyarov, S. A. Mironov, and V. M. Tkachenko, Bull. Russ. Acad. Sci.: Phys. 73, 1249 (2009).

    Article  Google Scholar 

  10. S. K. Hwang, H. M. Baek, I. H. Son, Y. T. Im, and C. M. Bae, Mater. Sci. Eng., A 579, 118 (2013).

    Article  Google Scholar 

  11. J. W. Lee, H. M. Baek, S. K. Hwang, I. H. Son, C. M. Bae, and Y. T. Im, Mater. Des. 55, 898 (2014).

    Article  Google Scholar 

  12. E. H. Pashinskaya, A. V. Zavdoveev, V. N. Varyukhin, A. A. Tolpa, and V. M. Tkachenko, Fiz. Tekh. Vys. Davlenii 25, 107 (2015).

    Google Scholar 

  13. E. G. Pahynskaya, A. Zavdoveev, S. Mironov, V. N. Varyukhin, and A. Maksakova, Int. J. Mater. Res. 107, 239 (2016).

    Article  Google Scholar 

  14. Z. A. Samoilenko, N. N. Belousov, N. N. Ivakhnenko, E. I. Pushenko, and V. N. Varyukhin, Phys. Solid State 56, 1234 (2014).

    Article  ADS  Google Scholar 

  15. Z. A. Samoilenko, N. N. Ivakhnenko, E. I. Pushenko, E. G. Pashinskaya, and V. N. Varyukhin, Phys. Solid State 57, 87 (2015).

    Article  ADS  Google Scholar 

  16. Z. A. Samoilenko, N. N. Ivakhnenko, E. I. Pushenko, E. G. Pashinskaya, V. N. Varyukhin, Phys. Solid State 58, 223 (2016).

    Article  ADS  Google Scholar 

  17. M. A. Krivoglaz, Electronic Theory of Heterogeneous States in Solids (Nauka, Moscow, 1988).

    Google Scholar 

  18. L. I. Kitaigorodskii, X-Ray Diffraction Analysis of Finely-Crystalline and Amorphous Bodies (Nauka, Moscow, 1952).

    Google Scholar 

  19. V. L. Hilarov, Phys. Solid State 47, 832 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Samoilenko.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilenko, Z.A., Ivakhnenko, N.N., Pushenko, E.I. et al. Self-Organization of Multiscale Structural Groups in a Low-Carbon Wire Subjected to Severe Drawing. Tech. Phys. 64, 187–194 (2019). https://doi.org/10.1134/S1063784219020178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219020178

Navigation