Skip to main content
Log in

Thermal Surface Interface for High-Power Arsenide–Gallium Heterostructure FETs

  • SOLID STATE ELECTRONICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Application of heat-conducting coatings for cooling of high-power FETs based on heterostructures with arsenide–gallium substrate is theoretically analyzed. When the basic technology for manufacturing of transistors is employed in the absence of additional efforts aimed at a decrease in the thermal resistance of the substrate, the application of an additional thermal interface that represents a heat-conducting dielectric coating makes it possible to substantially decrease the overheating of the transistor channel. A several-fold decrease in such overheating can be reached using variations in the thickness of the coating and modification of the transistor structure and working regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. M. Lukashin, A. B. Pashkovskii, K. S. Zhuravlev, A. I. Toropov, V. G. Lapin, and A. B. Sokolov, Tech. Phys. Lett. 38, 819 (2012).

    Article  ADS  Google Scholar 

  2. K. S. Zhuravlev, V. G. Lapin, V. M. Lukashin, A. B. Pashkovskii, A. B. Sokolov, and A. I. Toropov, Elektron. Tekh., Ser. 1: SVCh-Tekhnika, No. 1 (512), 55 (2012).

    Google Scholar 

  3. V. M. Lukashin, A. B. Pashkovskii, K. S. Zhuravlev, A. I. Toropov, V. G. Lapin, and E. I. Golant, A. A. Kapralova, Semiconductors 48, 666 (2014).

    Article  ADS  Google Scholar 

  4. A. A. Vorob’ev and A. V. Galdetskii, Elektron. Tekh., Ser. 1: SVCh-Tekhnika, No. 3 (510), 42 (2011).

    Google Scholar 

  5. P. C. Chao et al., MRS Adv. 1, 147 (2016).

    Article  Google Scholar 

  6. P. C. Chao et al., in Proc. CS MANTECH Conf., New Orleans, United States, 2013, p. 179.

  7. D. Altman, Raytheon Technol. Today, No. 1, 18 (2012).

    Google Scholar 

  8. K. V. Dudinov, V. M. Ippolitov, and A. B. Pashkovskii, Elektron. Tekh., Ser. 1: SVCh-Tekhnika, No. 2 (488), 5 (2006).

    Google Scholar 

  9. P. V. Berezhnova, V. M. Lukashin, A. K. Ratnikova, and A. B. Pashkovskii, Elektron. Tekh., Ser. 1: SVCh-Tekhnika, No. 4 (492), 21 (2007).

    Google Scholar 

  10. A. A. Vorob’ev, E. V. Vorob’eva, and A. V. Galdetskii, Elektron. Tekh., Ser. 1: SVCh-Tekhnika, No. 3 (510), 37 (2011).

    Google Scholar 

  11. D. J. Meyer, T. I. Feygelson, T. J. Anderson, J. A. Roussos, M. J. Tadjer, B. P. Downey, D. S. Katzer, B. B. Pate, M. G. Ancona, A. D. Koehler, K. D. Hobart, and C. R. Eddy, IEEE Electron Device Lett. 35, 1013 (2014).

    Article  ADS  Google Scholar 

  12. https://cordis.europa.eu/project/rcn/89921/reporting /en.

  13. A. A. Gippius et al., RF Patent No. 2244983 (2003).

  14. O. Seok et al., in Proc. CS MANTECH Conf., Portland, United States, 2010, p. 229.

  15. A. N. Korolev, A. V. Klimova, V. A. Krasnik, L. V. Lyapin, V. M. Malyshchik, L. V. Manchenko, V. A. Pchelin, and V. B. Tregubov, Radiotekhnika, No. 3, 53 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Pashkovskii.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashkovskii, A.B., Kulikova, I.V., Lapin, V.G. et al. Thermal Surface Interface for High-Power Arsenide–Gallium Heterostructure FETs. Tech. Phys. 64, 220–225 (2019). https://doi.org/10.1134/S1063784219020154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219020154

Navigation