Skip to main content
Log in

Self-Rotation of Dust Particles in Induction-Type RF Discharge

  • PLASMA
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Self-rotation (rotation about the center of mass) of dust particles in a magnetic field has been investigated. The angular velocity of self-rotation in a dust trap produced by an rf discharge has been measured for the first time. It has been discovered that the angular velocity is independent of magnetic induction up to 700 G in spite of the action of ion drag. In addition, the dependence of self-rotation velocity on gas pressure in the discharge when the particles are in the dust trap and on power deposited into the discharge has been measured for the first time. Experimental data correlate well with the developed model of dust particle self-rotation, which appears to maintain the stationary charge of the dust particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).

    Article  ADS  Google Scholar 

  2. H. Thomas, G. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Mohlmann, Phys. Rev. Lett. 73, 652 (1994).

    Article  ADS  Google Scholar 

  3. Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys. 33, L804 (1994).

    Article  ADS  Google Scholar 

  4. A. Bouchoule, Dusty Plasmas: Physics, Chemistry, and Technological Impact in Plasma Processing (Wiley, New York, 1999).

    Google Scholar 

  5. V. E. Fortov and G. E. Mofill, Complex and Dusty Plasmas: From Laboratory to Space (Taylor & Francis, New York, 2010).

    Google Scholar 

  6. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (Institute of Physics, Bristol, 2002).

    Book  Google Scholar 

  7. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College Press, London, 2005).

    Book  MATH  Google Scholar 

  8. V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M. Thomas, Elementary Physics of Complex Plasmas (Springer, New York, 2008).

    Book  MATH  Google Scholar 

  9. V. Yu. Karasev, E. S. Dzlieva, and S. I. Pavlov, Laboratory Dusty Plasma in a Magnetic Field (Svoe Izd., St. Petersburg, 2016).

    Google Scholar 

  10. O. S. Vaulina, O. F. Petrov, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Dusty Plasma: Experiment and Theory (Fizmatlit, Moscow, 2009).

    Google Scholar 

  11. N. Sato, AIP Conf. Proc. 799, 97 (2005).

    Article  ADS  Google Scholar 

  12. D. Samsonov, S. Zhdanov, and G. Morfill, New J. Phys. 5, 24 (2003).

    Article  ADS  Google Scholar 

  13. V. Yu. Karasev, E. S. Dzlieva, A. I. Eikhval’d, et al., Phys. Rev. E 79, 026406 (2009).

    Article  ADS  Google Scholar 

  14. V. Yu. Karasev, E. S. Dzlieva, M. A. Ermolenko, M. S. Golubev, and A. Yu. Ivanov, Contrib. Plasma Phys. 51, 509 (2011).

    Article  ADS  Google Scholar 

  15. E. S. Dzlieva, V. Yu. Karasev, and O. F. Petrov, J. Exp. Theor. Phys. 114, 167 (2012).

    Article  ADS  Google Scholar 

  16. V. Yu. Karasev, M. A. Ermolenko, E. C. Dzlieva, S. I. Pavlov, L. A. Novikov, and I. Ch. Mashek, Tech. Phys. 61, 618 (2016).

    Article  Google Scholar 

  17. E. S. Dzlieva, V. Yu. Karasev, and A. I. Eikhval’d, Opt. Spectrosc. 92, 943 (2002).

    Article  ADS  Google Scholar 

  18. V. Yu. Karasev, E. S. Dzlieva, A. Yu. Ivanov, and A. I. Eikhval’d, Phys. Rev. E 74, 066403 (2006).

    Article  ADS  Google Scholar 

  19. M. M. Vasil’ev, L. G. D’yachkov, S. N. Antipov, O. F. Petrov, and V. E. Fortov, JETP Lett. 86, 358 (2007).

    Article  ADS  Google Scholar 

  20. E. S. Dzlieva, M. A. Ermolenko, V. Yu. Karasev, S. I. Pavlov, L. A. Novikov, and S. A. Maiorov, JETP Lett. 100, 703 (2014).

    Article  ADS  Google Scholar 

  21. A. V. Nedospasov, Phys. Rev. E 79, 036401 (2009).

    Article  ADS  Google Scholar 

  22. A. V. Nedospasov, EPL 103, 25001 (2013).

    Article  ADS  Google Scholar 

  23. M. M. Vasiliev, L. G. D’yachkov, S. N. Antipov, R. Huijink, O. F. Petrov, and V. E. Fortov, EPL 93, 15001 (2011).

    Article  ADS  Google Scholar 

  24. E. S. Dzlieva, V. Yu. Karasev, and S. I. Pavlov, EPL 110, 55002 (2015).

    Article  ADS  Google Scholar 

  25. E. S. Dzlieva, V. Yu. Karasev, I. Ch. Mashek, and S. I. Pavlov, Tech. Phys. 61, 942 (2016).

    Article  Google Scholar 

  26. N. Sato, AIP Conf. Proc. 649, 66 (2002).

    Article  ADS  Google Scholar 

  27. M. Schwabe, U. Konopka, G. E. Morfill, et al., Phys. Rev. Lett. 106, 215004 (2011).

    Article  ADS  Google Scholar 

  28. E. Thomas, Jr., B. Lynch, U. Konopka, R. L. Merlino, and M. Rosenberg, Phys. Plasmas 22, 030701 (2015).

    Article  ADS  Google Scholar 

  29. E. Thomas, Jr., U. Konopka, B. Lynch, S. Adams, S. Le Blanc, R. L. Merlino, and M. Rosenberg, Phys. Plasmas 22, 113708 (2015).

    Article  ADS  Google Scholar 

  30. V. Yu. Karasev, E. S. Dzlieva, S. I. Pavlov, L. A. Novikov, and S. A. Maiorov, IEEE Trans. Plasma Sci. 46, 727 (2018).

    Article  ADS  Google Scholar 

  31. I. H. Hutchinson, New J. Phys. 6, 43 (2004).

    Article  ADS  Google Scholar 

  32. O. Ishihara and N. Sato, IEEE Trans. Plasma Sci. 29, 179 (2001).

    Article  ADS  Google Scholar 

  33. V. Tsytovich and S. Vladimirov, IEEE Trans. Plasma Sci. 32, 659 (2004).

    Article  ADS  Google Scholar 

  34. A. A. Stepanenko and S. I. Krasheninnikov, Phys. Plasmas 20, 033702 (2013).

    Article  ADS  Google Scholar 

  35. S. I. Krasheninnikov, Phys. Plasmas 13, 114502 (2006).

    Article  ADS  Google Scholar 

  36. Yu. P. Raizer, Physics of Gas Discharge (Nauka, Moscow, 1992).

    Google Scholar 

  37. V. E. Fortov, A. D. Usachev, A. V. Zobnin, and O. F. Petrov, Phys. Rev. E 70, 046415 (2004).

    Article  ADS  Google Scholar 

  38. V. E. Fortov, A. D. Usachev, A. V. Zobnin, V. I. Molotkov, and O. F. Petrov, Phys. Plasmas 10, 1199 (2003).

    Article  ADS  Google Scholar 

  39. A. V. Zobnin, A. D. Usachev, and V. E. Fortov, AIP Conf. Proc. 649, 293 (2002).

    Article  ADS  Google Scholar 

  40. F. F. Chen, Electric Probes. Plasma Diagnostic Techniques (Academic, New York, 1965).

    Google Scholar 

  41. P. M. Chung, L. Talbot, and K. J. Touryan, Electrical Probes in Stationary and Flowing Plasmas: Theory and Application (Springer, New York, 1975).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experiment was partially carried out with the support of RFBR (no. 14-02-00313); the interpretation was carried out as part of RFBR (project no. 18-02-00113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Karasev.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, V.Y., Dzlieva, E.S., Pavlov, S.I. et al. Self-Rotation of Dust Particles in Induction-Type RF Discharge. Tech. Phys. 64, 42–46 (2019). https://doi.org/10.1134/S1063784219010158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219010158

Navigation