Skip to main content
Log in

IR and THz Bolometric Detectors with Absorbers Characterized by Frequency Dispersion of Conductivity

  • EXPERIMENTAL INSTRUMENTS AND TECHNIQUE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Application of thin metal absorbers allows one to significantly increase the absorption coefficient and sensitivity of matrix THz microbolometric detectors. It is shown that absorbers characterized by frequency dispersion of conductivity, in contrast to conventional nondispersive absorbers, can provide almost total IR absorption retaining high sensitivity in the THz range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. W. M. Lee and Q. Hu, Opt. Lett. 30, 2563 (2005). https://doi.org/10.1364/OL.30.002563

    Article  ADS  Google Scholar 

  2. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, IEEE Photonics Technol. Lett. 18, 1415 (2006). https://doi.org/10.1109/LPT.2006.877220

    Article  ADS  Google Scholar 

  3. M. A. Dem’yanenko, D. G. Esaev, B. A. Knyazev, G. N. Kulipanov, and N. A. Vinokurov, Appl. Phys. Lett. 92, 131116 (2008). https://doi.org/10.1063/1.2898138

    Article  ADS  Google Scholar 

  4. N. Oda, H. Yoneyama, T. Sasaki, M. Sano, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, and T. Irie, Proc. SPIE 6940, 69402Y (2008). https://doi.org/10.1117/12.781630

    Article  ADS  Google Scholar 

  5. N. Oda, C. R. Phys. 11, 496 (2010). https://doi.org/10.1016/j.crhy.2010.05.001

    Article  ADS  Google Scholar 

  6. N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, and M. Kuwata-Gonokami, IEEE Trans. Terahertz Sci. Technol. 6, 175 (2016). https://doi.org/10.1109/TTHZ.2015.2508010

    Article  ADS  Google Scholar 

  7. N. Oda, M. Sano, K. Sonoda, H. Yoneyama, S. Kurashina, M. Miyoshi, T. Sasaki, I. Hosako, N. Sekine, T. Sudou, and S. Ohkubo, Proc. SPIE 8012, 80121B (2011). https://doi.org/10.1117/12.888992

    Article  ADS  Google Scholar 

  8. M. A. Dem’yanenko, Tech. Phys. 63, 120 (2018). https://doi.org/10.1134/S1063784218010097

    Article  Google Scholar 

  9. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1968).

    Google Scholar 

  10. M. A. Dem’yanenko, J. Opt. Technol. 84, 34 (2017). https://doi.org/10.1364/JOT.84.000034

    Article  Google Scholar 

  11. J. Lloyd-Hughes and T. I. Jeon, J. Infrared, Millimeter Terahertz Waves 33, 871 (2012). https://doi.org/10.1007/s10762-012-9905-y

    Article  Google Scholar 

  12. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., L.  A. Newquist, and M. R. Querry, Appl. Opt. 27, 1203 (1988). https://doi.org/10.1364/AO.27.001203

    Article  ADS  Google Scholar 

  13. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, Appl. Opt. 22, 1099 (1983). https://doi.org/10.1364/AO.22.001099

    Article  ADS  Google Scholar 

  14. D. Gall, J. Appl. Phys. 119, 085101 (2016). https://doi.org/10.1063/1.4942216

    Article  ADS  Google Scholar 

  15. F. Borondics, K. Kamarás, M. Nikolou, D. B. Tanner, Z. H. Chen, and A. G. Rinzler, Phys. Rev. B 74, 045431 (2006). https://doi.org/10.1103/PhysRevB.74.045431

    Article  ADS  Google Scholar 

  16. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D.  T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996). https://doi.org/10.1126/science.273.5274.483

    Article  ADS  Google Scholar 

  17. M. Camacho and A. I. Oliva, Microelectron. J. 36, 555 (2005). https://doi.org/10.1016/j.mejo.2005.02.068

    Article  Google Scholar 

  18. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, Phys. Rev. B 76, 125408 (2007). https://doi.org/10.1103/PhysRevB.76.125408

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Dem’yanenko.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dem’yanenko, M.A. IR and THz Bolometric Detectors with Absorbers Characterized by Frequency Dispersion of Conductivity. Tech. Phys. 64, 127–132 (2019). https://doi.org/10.1134/S1063784219010080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219010080

Navigation