Skip to main content
Log in

Decomposition of Aromatic Compounds Relevant to Organic Electronics under Exposure to Low-Energy Electrons

  • ELECTROPHYSICS, ELECTRON AND ION BEAMS, PHYSICS OF ACCELERATORS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The persistence of molecules to destruction under the action of low-energy (0–15 eV) electrons is investigated for a representative series of aromatic compounds of interest to organic electronics and photonics. The energy regions of the most effective interaction of free electrons with isolated molecules, which leads to the dissociative decay of molecules due to the formation of short-lived negative molecular ions unstable to fragmentation, are determined using resonance electron capture negative ion mass spectrometry. The characteristic fragmentation channels for molecular ions are revealed for some groups of compounds, and the threshold energies of the most significant fragmentation processes are estimated. Polycyclic aromatic hydrocarbons and oligophenyls are stable to the action of electrons in the electron energy range ~0–3 eV, above which these compounds are decomposed into the single channel of hydrogen atom detachment. For compounds with heterocycles (oxadiazole and maleimide derivatives) in their structure, the stability range narrows down to ~0–1 eV. Electrons with energies exceeding this range initiate the decay of molecules (anions) via various channels among which the detachment of a cyanate anion from a heterocyclic nucleus is the most intense and destructive process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Scholz, D. Kondakov, B. Lüssem, and K. Leo, Chem. Rev. 115, 8449 (2015). doi 10.1021/cr400704v

    Article  Google Scholar 

  2. N. Grossiord, J. M. Kroon, R. Andriessen, and P. W. M. Blom, Org. Electron. 13, 432 (2012). https://doi.org10.1016/j.orgel.2011.11.027

    Article  Google Scholar 

  3. E. A. Silinsh and V. Capek, Organic Molecular Crystals: Interaction, Localization and Transport Phenomena (AIP, New York, 1994).

    Google Scholar 

  4. Electron-Molecule Interactions and Their Applications, Ed. by L. G. Christophorou (Academic, New York, 1984), Vol. 2.

    Google Scholar 

  5. L. G. Christophorou, Adv. Electron. Electron Phys. 46, 55 (1978). https://doi.org/10.1016/S0065-2539(08)60411-4

    Article  Google Scholar 

  6. I. I. Fabrikant, S. Eden, N. J. Mason, and J. Fedor, Adv. At., Mol., Opt. Phys. 66, 545 (2017). https:// doi.org/10.1016/bs.aamop.2017.02.002

    Article  Google Scholar 

  7. M. V. Muftakhov, R. V. Khatymov, P. V. Shchukin, A. V. Pogulay, and V. A. Mazunov, J. Mass Spectrom. 45, 82 (2010). doi 10.1002/jms.1693

    Google Scholar 

  8. D. A. Ponomarev and V. V. Takhistov, J. Mol. Struct. 784, 198 (2006). https://doi.org/10.1016/j.molstruc.2005.07.035

    Article  ADS  Google Scholar 

  9. W. Sailer, A. Pelc, S. Matejcik, E. Illenberger, P. Scheier, and T. D. Märk, J. Chem. Phys. 117, 7989 (2002). https://doi.org/10.1063/1.1510446

    Article  ADS  Google Scholar 

  10. R. V. Khatymov, M. V. Muftakhov, V. A. Mazunov, D. V. Nedopekin, I. V. Galyautdinov, and V. N. Odinokov, Russ. Chem. Bull. 51, 306 (2002). https:// doi.org/10.1023/A:1015411928216

    Article  Google Scholar 

  11. P. V. Shchukin, M. V. Muftakhov, and R. V. Khatymov, Mass-Spektrom. 10, 158 (2013).

    Google Scholar 

  12. S. A. Pshenichnyuk and A. Modelli, Int. J. Mass Spectrom. 294, 93 (2010). doi 10.1016/j.ijms.2010.05.025

    Article  Google Scholar 

  13. V. A. Mazunov, P. V. Shchukin, R. V. Khatymov, and M. V. Muftakhov, Mass-Spektrom. 3, 11 (2006).

    Google Scholar 

  14. Organic Electronics Materials and Devices, Ed. by S. Ogawa (Springer, Tokyo, 2015). doi 10.1007/978-4-431-55654-1

    Google Scholar 

  15. S. Forget and S. Chénais, Organic Solid-State Lasers (Springer, 2013). doi 10.1007/978-3-642-36705-2

    Book  Google Scholar 

  16. N. A. Borisevich and V. A. Tolkachev, Sov. Phys. Usp. 25, 865 (1982). doi 10.1070/PU1982v025n12ABEH005001

    Article  ADS  Google Scholar 

  17. A. J. Wilson and K. A. Willets, Annu. Rev. Anal. Chem. 9, 27 (2016). doi 10.1146/annurev-anchem-071015-041612

    Article  Google Scholar 

  18. Printed Organic and Molecular Electronics, Ed. by D. R. Gamota, P. Brazis, K. Kalyanasundaram, and J. Zhang (Springer, 2004). doi 10.1007/978-1-4419-9074-7

    Google Scholar 

  19. R. V. Khatymov, V. Yu. Markov, R. F. Tuktarov, I. N. Ioffe, M. V. Muftakhov, S. M. Avdoshenko, A. V. Pogulay, and L. N. Sidorov, Int. J. Mass Spectrom. 272, 119 (2008). doi 10.1016/j.ijms.2008.01.007

    Article  Google Scholar 

  20. M. V. Muftakhov, Yu. V. Vasil’ev, and V. A. Mazunov, Rapid Commun. Mass Spectrom. 13, 1104 (1999). doi 10.1002/(SICI)1097-0231(19990630)13:12<1104::AID- RCM619>3.0.CO;2-C

    Article  ADS  Google Scholar 

  21. M. V. Muftakhov, R. V. Khatymov, V. A. Mazunov, D. A. Ponomarev, V. V. Takhistov, and L. P. Vatlina, Rapid Commun. Mass Spectrom. 14, 1482 (2000). doi 10.1002/1097-0231(20000830)14:16<1482::AID-RCM50>3.0.CO;2-E

    Article  ADS  Google Scholar 

  22. I. Kh. Aminev, V. I. Khvostenko, V. P. Yur’ev, and G. A. Tolstikov, Bull. Acad. Sci. USSR, Div. Chem. Sci. 22, 1831 (1973). https://doi.org/10.1007/ BF00932128

    Article  Google Scholar 

  23. S. Tobita, M. Meinke, E. Illenberger, L. G. Christophorou, H. Baumgärtel, and S. Leach, Chem. Phys. 161, 501 (1992). doi 10.1016/0301-0104(92)80165-R

    Article  Google Scholar 

  24. S. Denifl, S. Ptasińska, P. Sonnweber, D. Scheier, F. Liu, J. Hagelberg, L. Mack, T. Scott, and T. D. Märk, J. Chem. Phys. 123, 104308 (2005). https://doi.org/ 10.1063/1.2008947

    Article  ADS  Google Scholar 

  25. M. V. Muftakhov, R. V. Khatymov, V. A. Mazunov, V. V. Takhistov, and D. A. Ponomarev, Chem. Phys. Rep. 19, 2287 (2001).

    Google Scholar 

  26. Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds (CRC Press, Boca Raton, 2003).

    Google Scholar 

  27. J. Cioslowski, G. Liu, M. Martinov, P. Piskorz, and D. Moncrieff, J. Am. Chem. Soc. 118, 5261 (1996). doi 10.1021/ja9600439

    Article  Google Scholar 

  28. G. Blanquart, Int. J. Quantum Chem. 115, 796 (2015). doi 10.1002/qua.24904

    Article  Google Scholar 

  29. B. N. Papas, S. Wang, N. J. DeYonker, H. L. Woodcock, and H. F. Schaefer, J. Phys. Chem. A 107, 6311 (2003). doi 10.1021/jp030494x

    Article  Google Scholar 

  30. R. V. Khatymov, M. V. Muftakhov, and P. V. Shchukin, Rapid Commun. Mass Spectrom. 31, 1729 (2017). https://doi.org/10.1002/rcm.7945

    Article  ADS  Google Scholar 

  31. NIST Chemistry WebBook. https://webbook.nist.gov/ chemistry/.

  32. M. V. Muftakhov, V. A. Mazunov, and V. V. Takhistov, Russ. Chem. Bull. 43, 988 (1994). doi 10.1007/ BF01558063

    Article  Google Scholar 

  33. M. V. Muftakhov, R. V. Khatymov, and V. A. Mazunov, Russ. Chem. Bull. 49, 1489 (2000). doi 10.1007/ BF02495108

    Article  Google Scholar 

  34. R. V. Khatymov, M. V. Muftakhov, P. V. Schukin, and V. A. Mazunov, Russ. Chem. Bull. 53, 738 (2004). doi 10.1023/B:RUCB.0000037835.28726.0a

    Article  Google Scholar 

  35. R. V. Khatymov, M. V. Muftakhov, P. V. Schukin, and V. A. Mazunov, Russ. Chem. Bull. 52, 1974 (2003). https://doi.org/10.1023/B:RUCB.0000009641. 29142.3c

    Article  Google Scholar 

  36. D. V. Mavrodiev, M. F. Abdullin, D. A. Sainiev, I. M. Sakhautdinov, L. V. Khalilova, V. K. Mavrodiev, and I. I. Furlei, Khim. Vys. Energ. 47 (2), 83 (2013). doi 10.7868/S0023119713020087

    Google Scholar 

  37. V. I. Khvostenko, I. I. Furlei, A. N. Kost, V. A. Budylin, and L. G. Yudin, Dokl. Akad. Nauk SSSR 189, 778 (1969).

    Google Scholar 

  38. A. Modelli, D. Jones, and S. A. Pshenichnyuk, J. Chem. Phys. 139, 184305 (2013). doi 10.1063/ 1.4829057

    Article  ADS  Google Scholar 

  39. M. V. Muftakhov, N. L. Asfandiarov, and V. I. Khvo-stenko, J. Electron Spectrosc. Relat. Phenom. 69, 165 (1994). doi 10.1016/0368-2048(94)02047-4

    Article  Google Scholar 

  40. R. V. Khatymov, R. F. Tuktarov, and M. V. Muftakhov, JETP Lett. 93, 437 (2011). doi 10.1134/ S002136401108011X

    Article  ADS  Google Scholar 

  41. R. F. Tuktarov, R. V. Khatymov, P. V. Shchukin, M. V. Muftakhov, V. Yu. Markov, and O. A. Solomeshch, JETP Lett. 90, 515 (2009). doi 10.1134/ S0021364009190047

    Article  ADS  Google Scholar 

  42. R. V. Khatymov, P. V. Shchukin, R. F. Tuktarov, M. V. Muftakhov, V. Yu. Markov, and I. V. Goldt, Int. J. Mass Spectrom. 303, 55 (2011). doi 10.1016/j.ijms. 2010.12.014

    Article  Google Scholar 

  43. R. V. Khatymov, V. Yu. Markov, R. F. Tuktarov, I. N. Ioffe, M. V. Muftakhov, S. M. Avdoshenko, A. V. Pogulay, and L. N. Sidorov, Int. J. Mass Spectrom. 272, 119 (2008). doi 10.1016/J.IJMS.2008.01.007

    Article  Google Scholar 

  44. C. D. Cooper and R. N. Compton, J. Chem. Phys. 59, 3550 (1973). https://doi.org/10.1063/1.1680519

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Khatymov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muftakhov, M.V., Khatymov, R.V. & Tuktarov, R.F. Decomposition of Aromatic Compounds Relevant to Organic Electronics under Exposure to Low-Energy Electrons. Tech. Phys. 63, 1854–1860 (2018). https://doi.org/10.1134/S1063784218120125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218120125

Navigation