Skip to main content
Log in

Electric-Field-Controlled Motion of Liquid Droplets on the Surface of Dielectric Films

  • GASES AND LIQUIDS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Kinetics of water droplets on the surface of shielded metal electrodes is studied in the presence of external electric field. It is shown that the difference of contact angles of droplet fragments on the control electrodes plays the key role in motion. It is also shown that a droplet always moves toward the negative electrode regardless of the polarity of control electrodes and grounding for the dielectric system under study. The theoretical analysis of the results is based on the Lippmann equation written for a polarized droplet that is localized on control electrodes shielded with a multilayer insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Real capacitance of the Teflon capacitor Ci2 is greater than capacitances Ci1 and Ci3 by a factor of several hundreds.

  2. An MII-4 microinterferometer is used to measure thicknesses of the dielectric layer. For the measurements, the optically transparent layers are coated with thin reflecting Al films using physical vapor deposition.

REFERENCES

  1. C. S. Kwon, H. Moon, and Ch.-J. Kim, J. Microelectromech. Syst. 12, 70 (2003).

    Article  Google Scholar 

  2. P. Schultz, B. Cumby, and J. Heikenfeld, Appl. Opt. 51, 3744 (2012).

    Article  ADS  Google Scholar 

  3. M. K. Kilaru, B. Cumby, and J. Heikenfeld, Appl. Phys. Lett. 94, 041108 (2009).

    Article  ADS  Google Scholar 

  4. D. J. Preston, A. Anders, B. Barabadi, E. Tio, Y. Zhu, D. A. Dai, and E. N. Wang, Appl. Phys. Lett. 109, 244102 (2016).

    Article  ADS  Google Scholar 

  5. K. Mishra, D. van den Ende, and F. Mugele, Micromachines 7, 102 (2016).

    Article  Google Scholar 

  6. J. Heikenfeld and A. J. Steckl, Appl. Phys. Lett. 86, 011105 (2005).

    Article  ADS  Google Scholar 

  7. Ya. I. Gerasimov, A Course of Physical Chemistry (Khimiya, Moscow, 1973), Vol. 2.

    Google Scholar 

  8. F. Mugele and J.-Ch. Baret, J. Phys.: Condens. Matter 17, R705 (2005).

    Google Scholar 

  9. H. Ren, R. B. Fair, M. G. Pollack, and E. J. Shaughnessy, Sens. Actuators, B 87, 201 (2002).

    Article  Google Scholar 

  10. S. K. Cho, H. Moon, and C.-J. Kim, J. Microelectromech. Syst. 12, 70 (2003).

    Article  Google Scholar 

  11. S.-K. Fan, H. Yang, T.-T. Wang, and W. Hsu, Lab Chip 7, 1330 (2007).

    Article  Google Scholar 

  12. C. G. Cooney, C.-Y. Chen, M. R. Emerling, A. Nadim, and J. D. Sterling, Microfluid. Nanofluid 2, 435 (2006).

    Article  Google Scholar 

  13. A. Torkkeli, Droplet Microfluidics on a Planar Surface (VTT Publ., Espoo, 2003).

    Google Scholar 

  14. I. F. Guha, J. Kedzierski, and B. Abedian, Appl. Phys. Lett. 99, 024105 (2011).

    Article  ADS  Google Scholar 

  15. B. D. Summ and Yu. V. Goryunov, Physicochemical Basis of Wetting and Spreading (Khimiya, Moscow, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Makhmud-Akhunov.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, A.M., Makhmud-Akhunov, M.Y. & Kuznetsova, K.V. Electric-Field-Controlled Motion of Liquid Droplets on the Surface of Dielectric Films. Tech. Phys. 63, 1576–1581 (2018). https://doi.org/10.1134/S106378421811021X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421811021X

Keywords

Navigation